

The role of Montecarlo simulations in the characterization of diamond detectors for hadrontherapy

Lucrezia Bianchi, MSc INFN Roma Tre, University of Roma Tre

18 - 20 October 2023

INSIGHT Workshop – Pisa, Italy

stituto Nazionale di Fisica Nucleare EZIONE DI ROMA TRE

Introduction

Ionizing radiations -> kill malignant cells and treat different types of tumor

Hadrontherapy - high energy ion beams

- higher ballistic capability of the delivered dose
- higher biological efficacy (RBE>1)

Common aim: Decrease the absorbed dose to healthy tissue without compromising the prescribed target coverage

Introduction

Absorbed dose to water \rightarrow physical quantity routinary used for clinical prescription

 \rightarrow can be measured by commercial dosimeters

Dosimetry shows strong limitations with high LET particles

Microdosimetry takes into accounts stochastic nature of particle interaction with matter

DIODE (Diamond Integrated devices for haDronthErapy) project

Development and test of a novel detection system based on synthetic single crystal diamond able to simultaneously perform dosimetric and microdosimetric characterization of clinical hadron beams

Small error in detector positioning -> wrong evaluation LET -> wrong evaluation of RBE

Fast and exhaustive beam characterization

Reduction of the experimental uncertainties (detector positioning)

Diamond detectors

Development of novel diamond technology methods to realize different monolithic devices

Front-end Electronic

Development of a dedicated and optimized electronic readout to be connected as close as possible to diamond devices

Monte Carlo simulations

- Reproduce the effect of radiation passage inside detector
- Estimate the system capability to reproduce single particle energy-deposited spectrum
- Calculate dosimetric and radiobiological quantities of interest

Test vehicle and prototype characterization

Realization and test of a novel, practical and compact detection system

Monte Carlo simulations

Geant4 Monte Carlo simulation toolkit to support detector design

Test simulation model

62 MeV CATANA therapeutic proton beam in water

DOI: <u>10.1002/mp.14466</u>

600 keV protons Ruder Boskovic institute (RBI) ion microprobe facility in <u>vacuum</u>

DOI: <u>10.1016/j.radmeas.2018.02.001</u>

Overview

Experimental measurements

- AN200 INFN Legnaro
- 1 MeV ¹*H* in vacuum •
- Ion Beam Induced Charge (IBIC) maps

- •

• 1 MeV ¹*H* with 0.03 MeV energy spread Thickness of sensitive volume = 4.4 um • QGSP_BIC_HP(G4EmStandardPhysics_option4)

Offline analysis

Simulation outputs:

- X, Y positions;
- Energy deposited in the sensitive volume.

Evaluation of Charge Collection Efficiency (C.C.E.) :

- **IBIC** maps

 - can contribute to detectable signal.

C.C.E. = 1 0 um < r < 50 um

C.C.E. ~ 0.8 50 *um* < *r* < 52 *um*

C.C.E. < 0.8 52 *um* < *r* < 53 *um*

• Steep reduction of charge collection as the beam exits the active volume, following the decrease of electric fields;

• Particles that cross active volume within 3 um outside border

0.1

1.0

0.8

0.6

0.4

0.2

0.0

0.0

Normalized counts

Offline analysis

Geant4 simulation

Experimental data

mmmm

0.2

0.3

0.4

C.C.E. = 1 0 *um* < *r* < 50 *um*

without edge effects

0.5

0.6

edge effects +

- C.C.E. ~ 0.8 50 *um* < *r* < 52 *um*
- C.C.E. < 0.8 52 *um* < *r* < 53 *um*

Summary and outlook

- Monte Carlo simulations is performed using Geant4 Monte Carlo simulation toolkit to support detector ulletdesign;
- In the preliminary assessment of C.C.E of microdosimeters, good agreement is observed between ulletexperimental data and simulations;
- A further optimization of the integrated device will be possible thanks to the design of new photolithography mask;
- The performance of the final prototype will be evaluated at CNAO & TIFPA facilities. •

Thank you for your attention!

Contact: lucrezia.bianchi@roma3.infn.it