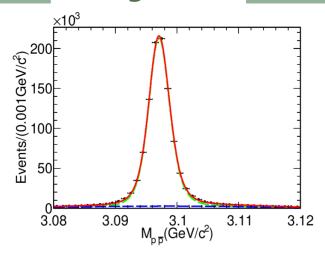
News from the last BESIII workshop

Isabella Garzia, UNIFE and INFN

BESIII workshop in March 2023

https://indico.ihep.ac.cn/event/18456/timetable/

Collaboration meeting in June: 26-30 June 2023


Measurement the Branching Fraction of

$$J/\psi o par p$$
 via $\psi' o \pi^+\pi^- J/\psi$

Meichen Yu, Francesca De Mori, Isabella Garzia, Li Gong, Xiaoshen Kang

Liaoning University

Fitting Result

PDF:

Signal : MC shape ⊗ Gaussian

Background: 2nd Chebyshev polynomial;

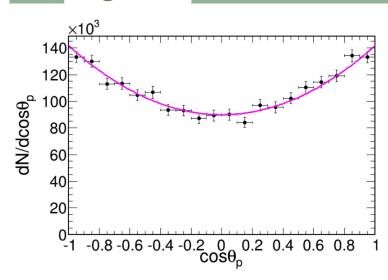
(QED contribution at 3.650 GeV)

$$N_{\text{fit}}(3686) = (1.0495 \pm 0.0011) \times 10^6$$

$$f = \frac{N(3686)}{N(3650)} = \frac{\mathcal{L}_{\psi(3686)}}{\mathcal{L}_{\psi(3650)}} \cdot \frac{\sigma_{\psi(3650)}}{\sigma_{\psi(3686)}} \cdot \frac{\varepsilon_{\psi(3686)}}{\varepsilon_{\psi(3650)}} = 8.236$$

$$Br(J/\psi \to p\overline{p}) = \frac{N_{obs}}{N_{\psi'}[\varepsilon \cdot B(\psi' \to \pi^+\pi^-J/\psi)]} = (2.099 \pm 0.002) \times 10^{-3}$$
 consistent with PDG

PDG: Br(
$$J/\psi \rightarrow p\overline{p}$$
) = $(2.120 \pm 0.029) \times 10^{-3}$


Measurement the Branching Fraction of

$$J/\psi o par p$$
 via $\psi' o \pi^+\pi^- J/\psi$

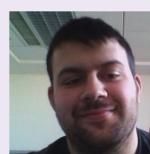
Meichen Yu, Francesca De Mori, Isabella Garzia, Li Gong, Xiaoshen Kang

Liaoning University

Angle Fit

Fit Function :
$$\frac{dN}{d\cos\theta} = A(1 + \alpha\cos^2\theta)$$

$$\alpha = 0.576 \pm 0.003$$


$$\alpha = 0.595 \pm 0.012$$

Phys. Rev. D 86, 032014 (2012)

17

Status update on pipiJpsi around psi(2S) mass

G Mezzadri on behalf of the working group

2023/03/13

P&S workshop

link to the slides here

Update the analysis of $h_c \rightarrow e^+e^-\eta_c$

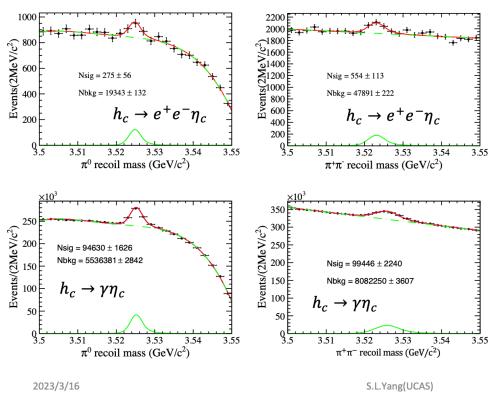
Shuangli Yang¹, Shuangshi Fang², Xiaorui Lyu¹

¹University of Chinese Academy of Sciences

²Institute of High Energy Physics

Mar 16, 2023 /Beijing

$$\psi(3686) \to \pi^0 h_c, h_c \to e^+ e^- \eta_c$$


$$e^+e^-
ightarrow \pi^+\pi^-h_c$$
, $h_c
ightarrow e^+e^-\eta_c$

Event Selection

 \triangleright A simultaneous unbinned maximum likelihood fit to π^0 recoil mass in data is performed, and the PDF can be written as

 $BW(M,\Gamma) \otimes CB \ shape(m,\sigma,\alpha,n) + background$

- \checkmark m, σ, α, n : the parameters of CB are fixed which got from Signal MC
- ✓ The width(Γ) of h_c is fixed to 0.7 MeV, and the mass(M) of h_c is free
- √ background: Chebyshev polynomial.

 $\psi(3686) \rightarrow \pi^0 h_c, h_c \rightarrow \gamma \eta_c$

18

Branching Fraction Ratio Measurement

 \triangleright The branching fraction ratio \mathcal{R} is calculated to be:

$$\mathcal{R} = \frac{\mathcal{B}(h_c \to e^+ e^- \eta_c)}{\mathcal{B}(h_c \to \gamma \eta_c)} \equiv \frac{N_{e^+ e^- \eta_c}^{obs}}{N_{\gamma \eta_c}^{obs}} \times \frac{\epsilon_2}{\epsilon_1}$$

 $\checkmark N_{e^+e^-\eta_c}^{obs}$ and $N_{\gamma\eta_c}^{obs}$: The h_c yields got from the fit

 \checkmark ϵ : The detection efficiency which got from Signal MC

Mode	$N_{\mathrm{e^{+}e^{-}}\eta_{c}}^{obs}$	$N_{\gamma\eta_c}^{obs}$	ϵ_1	ϵ_2	$\mathcal{R}(\%)$	Significance
Mode I	275 ± 56	94630 ± 1626	5.38%	7.99%	$(0.43 \pm \pm 0.09)\%$	5.3σ
Mode II	554 ± 113	99446 ± 2240	24.76%	33.12%	$(0.75 \pm 0.15)\%$	3.30
-	•		•			

 \checkmark Mode I: $\psi(3686) \rightarrow \pi^0 h_c$

 \checkmark Mode II: $e^+e^- \rightarrow \pi^+\pi^-h_c$

Compare the Branch fractions with previous results

Decay mode	previous	Now
$h_c \rightarrow e^+ e^- \eta_c$	$(57.68 \pm 14.42) \times 10^{-4}$	$(22.18 \pm 4.52) \times 10^{-4}$
$h_c \to \gamma \eta_c$	$(52.86 \pm 1.71) \times 10^{-2}$	$(51.38 \pm 0.88) \times 10^{-2}$

 \triangleright Compare the mass value of h_c with previous results

Decay mode	Previous(MeV/ c^2)	$Now(MeV/c^2)$	$PDG(MeV/c^2)$
$h_c \rightarrow e^+ e^- \eta_c$	3522.88 ± 0.42	3525.11 ± 0.50	3525.38 ± 0.11

✓ The differences of $\mathcal{B}(h_c \to e^+e^-\eta_c)$ and M_{h_c} between two results are too large, why?

PHYS. REV. D 106, 072007 (2022)

TABLE I. Results of the fits to the π^0 recoiling mass spectra with statistical (first) and systematic (second) uncertainties. The last column provides current PDG values.

Variable	Value	PDG value [5]
$M(h_c)$ (MeV/ c^2)	$3525.32 \pm 0.06 \pm 0.15$	3525.38 ± 0.11
$\Gamma(h_c)$ (MeV)	$0.78^{+0.27}_{-0.24} \pm 0.12$	$0.70 \pm 0.28 \pm 0.22$
	0.2.	(BESIII [7])
$N_{\mathrm{Tag}}(h_c)$	23118^{+1500}_{-1398}	
$\mathcal{B}_{\text{Inc}} \times \mathcal{B}_{\text{Tag}} \ (10^{-4})$	$4.22^{+0.27}_{-0.26} \pm 0.19$	4.58 ± 0.64
	-0.20	(BESIII [6])
		4.16 ± 0.48
		(CLEO [8])
$N_{\mathrm{Inc}}(h_c)$	46187 ± 2123	• • •
$\mathcal{B}_{\text{Inc}} \ (10^{-4})$	$7.32 \pm 0.34 \pm 0.41$	$8.40 \pm 1.30 \pm 1.00$
		(BESIII [6])
		$9.00 \pm 1.5 \pm 1.3$
		(CLEO [25])
$\mathcal{B}_{\mathrm{Tag}}$ (%)	$57.66^{+3.62}_{-3.50} \pm 0.58$	$53 \pm 7 \pm 8$
		(BESIII [6])
		$48 \pm 6 \pm 7$
		(CLEO [8])

Comparison with M. Scodeggio analysis published in 2022

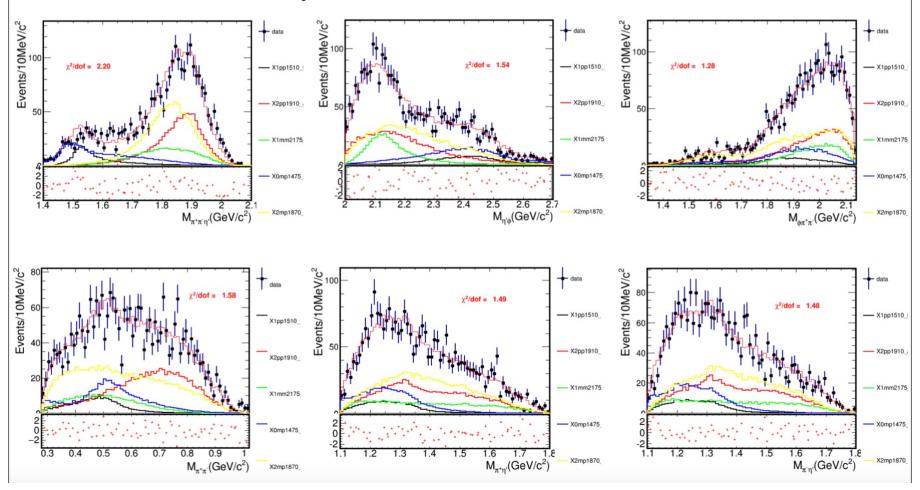
Compare the Branch fractions with previous results

Decay mode	previous	Now
$h_c \to e^+ e^- \eta_c$	$(57.68 \pm 14.42) \times 10^{-4}$	$(22.18 \pm 4.52) \times 10^{-4}$
$h_c \to \gamma \eta_c$	$(52.86 \pm 1.71) \times 10^{-2}$	$(51.38 \pm 0.88) \times 10^{-2}$

\triangleright Compare the mass value of h_c with previous results

Decay mode	Previous(MeV/c²)	Now(MeV/c ²)	$PDG(MeV/c^2)$
$h_c \rightarrow e^+ e^- \eta_c$	3522.88 ± 0.42	3525.11 ± 0.50	3525.38 ± 0.11

✓ The differences of $\mathcal{B}(h_c \to e^+e^-\eta_c)$ and M_{h_c} between two results are too large, why?


PWA of $J/\psi \rightarrow \phi \pi^+ \pi^- \eta'$

¹Yanping Huang, ¹Ligang Shao, ¹Yuqing Wang, ²Jiajun Wu ¹Institute of High Energy Physics ²University of Chinese Academy of Sciences

https://indico.ihep.ac.cn/event/18456/contributions/129503/attachments/67317/79856/workshop_phipipietap_20230313.pdf

Projection plots

Total intensity of sum of all interference terms: -13.7%

Projection plots

- Using 10B J/ψ collected at BESIII, a PWA to $J/\psi \to \phi \pi^+ \pi^- \eta'$ is performed.
- No significant X(1835) signal is observed in the $\pi^+\pi^-\eta'$ invariant mass spectrum.
- In this preliminary solution, the Y(2175) resonance is observed in the invariant mass spectrum of $\phi \eta'$ with a statistical significance of greater than 10σ . The J^{PC} of Y(2175) is determined to be 1^{--} , and the mass and width of Y(2175) are:
 - $M[Y(2175)] = 2105^{+10}_{-15} \text{MeV/c}^2$
 - $\Gamma[Y(2175)] = 140 \pm 25 \text{MeV/c}^2$

data

1pp1510_

- X2pp1910_

X1mm2175

X0mp1475_

X2mp1870_

....

X1pp1510

1mm2175

K0mp1475

 $M_{\pi^{-\eta}}$ (GeV/c²) $X_{2mp1870}$

 $M_{\pi^*\pi^*}(GeV/c^2)$

Events/10MeV/c²

Events/10MeV/c²

1.2 1.3 1.4 1.5 1.6 1.7 1 M₊₊,(GeV/c²

 $I_{\pi^*\eta^*}(\text{GeV/c}^2)$ ×2mp1870

COLLINS ASYMMETRY OF CHARGED HADRONS AT BES III

Nan-Yang Wang¹, Bin-Long Wang¹, Ying Wang², Xiao-Rui Lyu¹, Qian Liu¹,

Zheng-Yun You², Yang-Heng Zheng¹

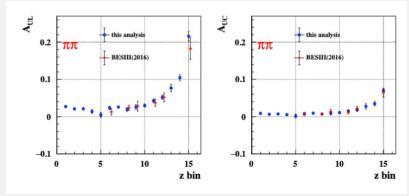
'UCAS(中国科学院大学)

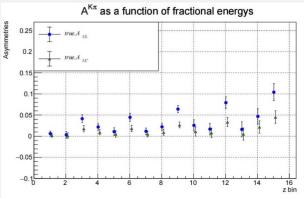
2SYSU(中山大学)

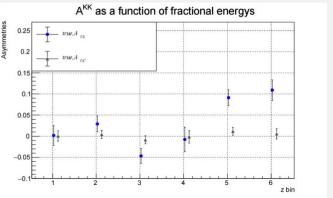
BESIII Collaboration Meeting

2022-6-13

• Data


• 446.5 pb-1 @3.51 GeV


Data info.	Run number	Energy(GeV)	Lum.(pb ⁻¹)
$\chi_{c1}(P2)$	51584-51656	3.5099	39.3
$\chi_{c1}(P3)$	51657-51893	3.5082	181.5
$\chi_{c1}(P4)$	51894-52090	3.5106	184.6
$\chi_{c1}(P5)$	52298-52332	3.5148	41.1


old BESIII ana: 62 pb-1 @ 3.65 [<u>link</u>]

RESULTS AND COMPARISON

this analysis:

CollinsFF measurement in the BESIII 2023/3/16

Conferenze italiane: IFAE + SIF