

Why explore higher frequencies?

Higher driving frequency allows:

• higher acceleration fields: $|\vec{E}|_{breakdown} \sim \frac{1}{\tau^{1/6}} \rightarrow$ smaller accelerator [1] Kilpatrick, W. D., Rev. Sci. Inst. 28, 824 (1957). [2] Loew, G.A., et al., 13th Int. Symp. on Discharges and Electr. Insulation in Vacuum, Paris, France. 1988.

[3] S. V. Dolgashev, et al. Appl. Phys. Lett. 97, 171501 2010.

- [4] M. D. Forno, et al. PRAB. 19, 011301 (2016).
- lower pulse energy for same E-field in the cavity: $U_{Pulse} \sim \left|\vec{E}\right|^2 V_{cavitv} \sim \lambda^3 \sim f^{-3}$

• reduced pulsed heating:
$$\Delta T \sim \frac{U_{Pulse}}{A_{Surface}} \sim \lambda \sim f^{-1} \rightarrow$$
 higher rep rates!

- higher field gradients:
 - stronger compression: $\frac{dF}{dz} \sim \frac{|\bar{E}|}{\lambda} \sim f^2 \rightarrow$ shorter bunches
 - quicker acceleration → reduce space charge effects

THz 1 mm

Laser-Plasma 0.01 mm

Laser-Dielectric 0.001 mm

Page 2

THz Benefits: shorter waves, higher fields, stronger gradients

Parameter	RF Accelerators	THz Accelerators	THz Enhancement
Field Strengths, E ₀	10 – 100 MV/m	100 – 1000 MV/m	~10x
Wavelength, λ	3 – 10 GHz	100 – 500 GHz	~100x
Field Gradients, $\frac{dE_0}{dz}$	~10 GV/m ²	~10,000 GV/m ²	~1000x

THz-powered electron and X-ray light source: AXSIS

F.X. Kärtner et al., NIMPRA 829, 24 (2016)

STEAM device yields practical beam acceleration & manipulation

THz-compression enhances UED temporal resolution

DESY. Nicholas H. Matlis - WP13 EuPRAXIA electron and photon diagnostics - 2023.06.12

Page 6

THz acceleration and beam manipulation takes up speed!

THz-powered iFEL E. Curry et al., PRL 120, 094801 (2018)

Acceleration M. Hibberd et al., Nat. Photon. (2020)

Acceleration & Staging

Others:

H. Xu et al., Nat. Photon. (2021)

- Kealhofer et al., Science 359, 459 (2016)
- Walsh et al., Nature Comm. 8, 421 (2017)
- Zhao et al., PRX 8, 021061 (2018)
- Li et al., Phys. Rev. Accel. Beams 22, 012803 (2019)

DESY. Nicholas H. Matlis - WP13 EuPRAXIA electron and photon diagnostics - 2023.06.12

Applications of THz for LPAs and Conventional Accelerators

- THz Streaking
- THz Compression
- THz Focusing
- THz Beam Shaping

Output of SwissFEL

M. Kirchen et al., Phys. Rev. Lett. 126, 174801 (2021)

Output of LPA

2-geometries for THz-electron interaction

dielectric lining

Tuning: dielectric I.D. & O.D.

DESY. Nicholas H. Matlis - WP13 EuPRAXIA electron and photon diagnostics - 2023.06.12

Page 9

x 10⁴

k (m⁻¹)

L.J. Wong et al., Opt. Exp. 21, 9792 (2013)

Benefits and Challenges for Applying THz to High-Energy Beams

Challenges

• High-energy requires lots of "umpf"

Benefits

- Beams are moving really close to c
- · Beam velocity doesn't change with energy
- Long interaction lengths possible
- THz pulse durations can be short
- Waveguide dispersion is minimized

Near luminal operation brings key advantages

- THz dispersion is very low \rightarrow can use short pulses
- THz pulse walk-off is very low \rightarrow can use short pulses

Benefits of high electron energy: uniform field profile

Acceleration mode TM₀₁ in DLW needs radially polarized input

Tuning the frequency to the length-scale of the feature

Quantifying the effectiveness vs frequency

RF is ~1 million times less effective than THz

Optimized frequency minimizes average energy gain

Matched frequency uses full peak to peak amplitude of THz

- $Q = 200 \, \text{pC}$
- $\langle \Delta KE \rangle \cong 37 \text{ MeV}$
- $\delta E = 7.4 \text{ mJ}$

Near luminal v_{ϕ} and v_{grp} allow long interaction lengths

DESY. Nicholas H. Matlis - WP13 EuPRAXIA electron and photon diagnostics - 2023.06.12

Page 17

Phase and group velocities approach zero at higher frequency

Larger waveguides may work without dielectric

dielectric-loaded waveguide

DESY. Nicholas H. Matlis - WP13 EuPRAXIA electron and photon diagnostics - 2023.06.12

Multi-mJ laser-based THz sources now exist

Page 20

Organic crystals promising for 5 THz, GV/m fields

wavelength difference for 5 THz generation: 15 nm

- Laser: Cr:forsterite, 1250 nm, 30 mJ, 10 Hz
- Bandwidth: 20 nm
- Crystal: DSTMS
- C. Vicario et al., Opt. Lett. 39, 6632 (2014)

- Laser: Ti:Sapphire, 20 mJ, 100 Hz
- OPA output: 3 mJ, 1500 nm
- Bandwidth: >100 nm
- Crystal: DSTMS
- C. Vicario et al., PRL 112, 213901 (2014)

DESY. Nicholas H. Matlis - WP13 EuPRAXIA electron and photon diagnostics - 2023.06.12

Staged THz interaction with laser recycling (Fourier Concept)

- Cost of insertion is low
- Main cost (laser) can be reused and flexibly repurposed

Next steps...

- Explore parameter space for Chirp Correction
 - Ask for sample problems
 - Full-scale simulations
 - Beam loading effects
 - Efficiency optimization
 - Dispersion management
- Apply for funding to do feasibility study
- Look for candidates to do proof-of principle experiments
 - LPAs are good options because of laser

AXSIS Team and Collaboration

Ultrafast Optics and X-rays Group

Alumni

Accelerator Division: DESY

Coherent Diffractive Imaging Group

Bio-Physical-Chemistry Group

Detector Group UHH (LUX)

DESY. Nicholas H. Matlis - WP13 EuPRAXIA electron and photon diagnostics - 2023.06.12

Conclusions

- THz waves present unique options for electron acceleration and manipulation
- Energy requirements are reasonable or near reasonable for addressing key problems in plasma and conventional accelerators
- Worthwhile to explore the options
- Vision of the future: Synergy between THz, plasma and conventional accelerators

Attosecond X-ray Science: Imaging and Spectroscopy

THz-driven Accelerator and Light Source

Ultrafast Optics & X-Rays Center for Free-Electron Laser Science Group Leader: Dr. Franz X. Kärtner

Henry Chapman Ralph Assmann DESY & UHH DESY Petra Fromme DESY & ASU

DESY. Nicholas H. Matlis - WP13 EuPRAXIA electron and photon diagnostics - 2023.06.12

THz Accelerator Technology: Scaling from cm to mm and below

Pa	arameter	RF Accelerators	THz Accelerators	THz Enhancement
Field S	Strengths, <mark>E₀</mark>	10 – 100 MV/m	100 – 1000 MV/m	~10x
Way	/elength, <mark>λ</mark>	3 – 10 GHz	100 – 500 GHz	~100x
Field Gra	adients, $\frac{dE_0}{dz}$	~10 GV/m ²	~10,000 GV/m ²	~1000x
RF Gun	Eu-XFEL	Compact De high-field low emitta ideal for L	evices acceleration AX DED THz Gun	SIS D. Zhang <i>et al.</i> , Nature Photonics (2018)
RF LINAC ~ 2 km			THz LINAC ~ 8 cm	E. Nanni et al. 8486 (2015)

Quasi Phase-Matching Enables Efficient Multicycle THz Generation

Recent results from our group in THz generation with QPM

Record Result	Energy	Material	Conv. Eff.	Article
Energy	1 µJ	LiNbO3	0.12%	Carbajo et al., Opt. Lett. 40, 5762 (2015)
Energy	40 µJ	LiNbO3	0.13%	Ahr et al., Opt. Lett. 42, 2118 (2017)
Energy	600 µJ	LiNbO3	0.24%	Jolly et al., Nat. Commun. 10, 2591 (2019)
Energy	1,300 µJ	LiNbO3	0.14%	Lemery, Commun Phys 3, 150 (2020)
Material	0.7 µJ	KTP	0.16%	W. Tian et al., Opt. Lett. 46, 741 (2021)
Efficiency	45 μJ	LiNbO3	0.89%	H. T. Olgun et al., Opt. Lett. 47 , 2374 (2022)

DESY. Nicholas H. Matlis - WP13 EuPRAXIA electron and photon diagnostics - 2023.06.12

Record Energy Multicycle THz Generation using Chirp & Delay

Record multicycle THz efficiency using 2-line laser

DESY. Nicholas H. Matlis - WP13 EuPRAXIA electron and photon diagnostics - 2023.06.12

Theory predicts multiple percent efficiency is possible with optimized laser input

K. Ravi & F. X. Kärtner, Laser & Photon. Rev. 14, 2000109 (2020)
K. Ravi et al., Opt. Lett. 24, 25582 (2016)
A. G. Stepanov, JETP Lett., 85, 227(2007)
M. Cronin-Golomb, Opt. Lett. 29, 2046 (2004)

DESY. Nicholas H. Matlis - WP13 EuPRAXIA electron and photon diagnostics - 2023.06.12

THz Accelerator is composed of THz Gun + THz LINAC

DESY. Nicholas H. Matlis - WP13 EuPRAXIA electron and photon diagnostics - 2023.06.12

THz and electron timing controls STEAM function

Preliminary work demonstrates elements required for a THz gun

THz Gun I: $0 \rightarrow 0.8$ keV acceleration ٠

Parallel-Plate structure with 75 µm gap

THz Gun III: $0 \rightarrow 3$ keV acceleration ٠

- 1st demonstration of THz gun •
- Sub-keV electrons demonstrated
- One-side pumped
- 1D THz field concentration

W. Huang, et al., Optica 3, 1209 (2016) A. Fallahi, et al., PRSTAB 19, 081302 (2016)

• $E_{kin} = 2.43 \text{ keV}$

- Highest energy for THz-driven photogun
- · Control over injection demonstrated

N. H. Matlis et al. in preparation

THz Gun IV: $0 \rightarrow 200$ keV acceleration (in development) ٠

DESY. Nicholas H. Matlis - WP13 EuPRAXIA electron and photon diagnostics - 2023.06.12

THz acceleration – Nonrelativistic electrons

THz Gun: $0 \rightarrow 0.8$ keV acceleration

W. Huang, *et al.,* Optica 3, 1209 (2016) A. Fallahi, *et al.,* PRSTAB 19, 081302 (2016)

THz LINAC: ±7 keV energy modulation

mm-scale THz waveguide E. Nanni et al., Nature Comm. 6, 8486 (2015)

THz Manipulator (STEAM): acceleration, compression, focusing and streaking

D. Zhang *et al.*, Nature Photonics (2018)D. Zhang *et al.*, Optica Vol. 6, pp. 872-877 (2019)

STEAM devices combined & configured for diverse applications

Nicholas H. Matlis - WP13 EuPRAXIA electron and photon diagnostics - 2023.06.12

Page 36

Energy (keV)

Why not use a series of transversely-pumped boosters?

Benefits and Challenges of Dielectric-Loaded Waveguide LINACs

dielectric-loaded waveguide

Benefits

- Simple fabrication
- Tunable by varying the dimensions
- Travelling-wave nature allow efficient driving with pulses
- Dielectric sustains higher fields

Critical Issues

- **Tuning:** adjusting the speed of the wave
- Dispersion causes the THz pulse evolves
- **Dephasing:** electrons to move relative to wave crests
- **Walk-off:** electrons move relative to pulse envelope)
- Inefficient for low electron energies
- Coupling requires mode conversion to TM₀₁

Phase velocity tuned using dielectric layer thickness

"Cavity Waveguide"

"Disk-Loaded Waveguide"

Restrictions used to tune phase velocity

Solution for low injection v_e : staged DLWs & energy recycling

Staging DLWs and recycling energy improves LINAC performance

v/c (53 keV) = 0.423 v/c (54.2 keV) = 0.427

D. Zhang et al., Phys. Rev. X 10, 011067 (2020)

DESY. Nicholas H. Matlis - WP13 EuPRAXIA electron and photon diagnostics - 2023.06.12

Electron acceleration, compression and focusing with DLW

Page 43

TM₀₁ - mode of DLW Group and Phase velocity

