Beam Profile Monitors for Electron Beams in PAL-XFEL

June 12, 2023 Changbum Kim On behalf of PAL-XFEL Pohang Accelerator Laboratory

Contents

- PAL-XFEL
- Transverse Profile Monitors
 - Screen Monitor
 - Wire Scanner
- Lattice Matching

PAL-XFEL

Layout & Parameters of PAL-XFEL

Main parameters

e⁻ Energy e⁻ Bunch charge Slice emittance Repetition rate Bunch length Peak current SX line switching 11 GeV 20-200 pC < 0.4 mm mrad 60 Hz 5 fs – 50 fs 3 kA Kicker Magnet

Undulator Line	НХ	SX
Photon energy [keV]	2.0 ~ 15.0	0.25 ~ 1.25
Beam Energy [GeV]	4 ~ 11	3.0
Wavelength Tuning	Energy	Gap
Undulator Type	Planar	Planar
Undulator Period / Gap [mm]	26 / 8.3	35 / 9.0

Linear Accelerator Tunnel

Value

Klystron & Modulator Gallery

Undulators

Beamline

Experimental Station: Hard X-ray Pump & Probe, Coherent X-ray Imaging, Soft X-ray Pump & Probe

Diagnostics for PAL-XFEL

Parameter	Instruments	Number	Resolution
Beam Position &	Stripline BPM	160	< 5 um
Beam Energy	Cavity BPM	49	< 1 um
Beam Size	Screen Monitor	54	< 10 um
	Wire Scanner	9	< 10 um
Bunch Length	Coherent Radiation Monitor	4	-
	Transverse Deflecting Cavity	3	< 10 fs
Beam Charge	Turbo ICT	10	< 1 pC
Beam Arrival Time	Beam Arrival Time Monitor	10	< 30 fs
Beam Loss	Beam Loss Monitor	26	-

Screen Monitor

- Generally destructive to the beam (energy absorbed, scattering of particles as they pass through screen)
- Camera shutter should be synchronised to beam arrival for best results
- Full 2D transverse profile in one shot
- Actuator required to remove screen from beam path

Various Targets

Example: Color CCD camera

- very different light yield i.e. photons per ion's energy loss
- different wavelength of emitted light

Phosphor Screens

- High conversion efficiency (300-400 photons from one 10 keV electron on a 5 µm thick layer)
- Relatively long fluorescence decay time (up to many ms)
- Opaque, thus typically used as thin layer of small grains (down to 1 µm) deposited on a substrate
- Resolution is about twice phosphor layer thickness
- Layers are mechanically fragile and can be damaged by high intensity beam

Proxitronic data sheet

Туре	Composition	Light Emission		on Light Emission Decay Time		/ Time	
		Rar	nge	Maximum	Color	Decay of Li	ght Intensity
		from	to	typically at		from 90 % to	from 10 % to
						10 % in	1 % in
P 43	Gd ₂ O ₂ S:Tb	360 nm	680 nm	545 nm	green	1 ms	1,6 ms
P 46	Y ₃ Al ₅ O ₁₂ :Ce	490 nm	620 nm	530 nm	yellow	300 ns	90 µs
					green		
P 47	Y ₂ SiO ₅ :Ce,Tb	370 nm	480 nm	400 nm	blue	100 ns	2,9 µs
					white		
P 20	(Zn,Cd)S:Ag	470 nm	670 nm	550 nm	yellow	4 ms	55 ms
					green		
P 11	ZnS:Ag	400 nm	550 nm	450 nm	blue	3 ms	37 ms

12

Scintillator Screens

- Optical transparency at wavelengths of their own specific emission energy
- Resolution is comparable to screen thickness
- Short fluorescence decay times (< 1 µs)
- Some have high mechanical strength, so thin (> 50 μ m), freestanding screens are feasible
- Desirable:
 - High density, more energy absorbed for same thickness
 - High conversion efficiency, more photons per energy absorbed

	YAG:Ce	LuAG:Ce	YAP:Ce	BGO
Density [g/cm ³]	4.57	6.73	5.37	7.13
Hardness [Mho]	8.5	8.5	8.6	5
Chemical formula	$Y_3Al_5O_{12}$	$\mathrm{Lu_3Al_5O_{12}}$	YAIO ₃	Bi ₄ (GeO ₄) ₃
Wavelength of max. emission [nm]	550	535	370	480
Decay constant [ns]	70	70	25	300
Photon yield at 300 K [10 ³ Ph/MeV]	35	20	25	8-10
				PUHAN

Optical Transition Radiation (OTR) Target

- Transition Radiation is created when relativistic charged particle cross a dielectric boundary
- Typically, metal targets are used, as metals have large negative dielectric constant at optical frequencies
- A part of the emitted photons (OTR) is in the visible and can be used to image the particle distribution
- Forward OTR is emitted in a cone around the particle trajectory
- Backward OTR is emitted in a cone around the 'reflected' particle trajectory

Properties of OTR

• Intensity scales with:

$$I \propto rac{ heta^2}{\left(heta^2 + \gamma^{-2}
ight)^2}$$

- Maximum at $1/\gamma$
- Number of (visible) photons per particle:

$$N = \frac{1}{137\pi} (2\ln\gamma - 1) \cdot \ln\left(\frac{\lambda_{red}}{\lambda_{blue}}\right)$$

• Practically: 1-3% of particle number

Advantages & Disadvantages of OTR

- Advantages
 - Like a phosphor screen, but without resolution limits (resolution possible down to optical wavelength)
 - No saturation, linear intensity to destruction threshold (>10¹² e⁻/mm²)
- Disadvantages
 - Few photons per electron, which are emitted into a large angle at low particle energies
 - Practically only feasible for strongly relativistic particles (γ >100)

- 3-position pneumatic actuator
- RF shield for reducing the wake field
- Scintillator (YAG:Ce)
- OTR Target (Al-foil)
- LED backlight lamp
- Neutral density filter
- DSLR lens
- DC motor for remote focusing
- GigE camera
- Tilt stage for Scheimflug's geometry

Target Holder

YAG:Ce with markers for beam size callibration (Measured resolution = $8 \mu m X 6.5 \mu m$)

RF shield *Norminal operation

OTR Target

- OTR imaging with Al foil
 thickness : 1 µm
- Target rotation: 22.5 °

Unexpected COTR @ LCLS

HELMHOLTZ =

R. Akre et al., Phys. Rev. ST Accel. Beams 11 (2008) 030703

H. Loos et al., Proc. FEL 2008, Gyeongju, Korea, p.485.

• Linac Coherent Light Source (LCLS) @ SLAC

> uncompressed beam, OTR behind BC1

- $\rightarrow \sigma_t = 2.4 \text{ ps} \text{ (rms)}$
- > scan of quad QB \rightarrow intensity varies by factor 4

($\sigma_{x,y}$ increased by 25 %)

comparison with incoherent level \rightarrow only fraction of 3.10⁻⁵

• OTR monitor observation with BC1, BC2 switched on

E.L. Saldin et al., NIM A483 (2002) 516

Z. Huang and K. Kim, Phys. Rev. ST Accel. Beams 5 (2002) 074401

ELERATOR LABORATORY

Gero Kube, DESY / MDI

2

4th XFEL 3-Site Meeting (RIKEN), Oct 30th –Nov 3rd 2011

Radiation Power of Incoherent and Coherent Radiation

Scintillator Target

- YAG:Ce scintillator
 Thickness : 100 or 30 µm
- Observation geometry of 45° with respect to the beam axis
 - \Rightarrow Minimized holder size
 - \Rightarrow Big error from target thickness

Beam Size with Observation Angle

$$= d\cos\beta \cdot \sqrt{\frac{1}{1 - \frac{\sin^2\beta}{n^2}} + \frac{1}{\cos^2\alpha} - 2\frac{\cos\left[\arcsin(\frac{\sin\beta}{n}) + \alpha\right]}{\sqrt{1 - \frac{\sin^2\beta}{n^2}\cos\alpha}}}.$$

R. Ichebeck at al., Phys. Rev. ST Accel. Beams 18, 082802 (2015) PALS POHANG ACCELERATOR LABORATORY

SwissFEL Screen Monitor

R. Ichebeck at al., Phys. Rev. ST Accel. Beams 18, 082802 (2015) PALP POHANG ACCELERATOR LABORATORY

Geometry of New Target Holder

3D Design of New Target Holder

Pictures of New Target Holder

27

Measurement Results of Screen Monitor

Working Principle of Wire Scanner

- 1D Profile is measured either as intensity of radiation (Bremsstrahlung) or as secondary emitted electron current over position of wire
- Resolution down to wire diameter (5-6 µm)
- Instead of movement, many wires can be used in a 'harp'

Wire Scanner of PAL-XFEL

Screen monitor and wire scanner

Beam Loss Monitor for Linac

BCF-20 Scintillating fiber ($\phi = 250 \ \mu m$)

- 492 nm peak emission wavelength
- 2.7 ns decay time

Hamamatsu H10722-110 - 230 ~ 700 nm spectral response

POHANG ACCELERATOR LABORATORY

- Optical fiber is wound on the vacuum chamber for Cherenkov radiation
- Optical fiber is shielded from external light and connected directly to the PMT head

Beam Loss Monitor for Undulator

Control Layout & Measurement GUI

Correction of Beam Position Jitter

Limitations of Wire Scanners

Smallest measurable beam size limited by wire diameter (smallest usually few µm)

High beam density (small size and high intensity) can destroy wire (due to heat load)

PIGURE 3. Failed 15 µm diameter tungsten wire showing the rough surface resulting from many discharges.

Figure 2: Broken 4µm carbon wire at SLC. It is possible to observe how successive pulses have eroded the wire.

Lattice Matching with Wire Scanners

Before Lattice Matching in Undulator

After Lattice Matching in Undulator

Thanks to:

All Members in PAL-XFEL and Domestic/International Collaborations

