Photon diagnostics @ FLASH

WP13 EuPRAXIA electron and photon diagnostics workshop

Stefan Düsterer for the FLASH team 13.06.2023

HELMHOLTZ

FLASH Photon beam parameters

Photon beam Parameters	FLASH1	FLASH2
Photon energy fundamental (eV)	24 – 290 eV	14 – 300 eV
Wavelength fundamental (nm)	4.2 – 51 nm	4 – 90 nm
Photon pulse duration (FWHM)	<30-200 fs	<30-200 fs
Single photon pulse energy (average)	1 – 500 μJ	1 – 1000 μJ
Spectral width (FWHM)	0.7 – 2 %	0.5 – 2 %
Pulses per second**	10 - 5000	10 - 5000

**shared between FLASH1 and FLASH2

Stefan Düsterer | 13.6.2023 | EuPRAXIA workshop

SASE pulses (Self-Amplified Spontaneous Emission)

Spectral measurements

Diagnostic tools for FELs.

What kind of diagnostic tools do users need to make efficient use of FELs?

Due to the SASE specific shot-to-shot fluctuation the users need most this information for every single pulse => online, non-destructive

- ≻ focus size
- ≻beam position
- ➤ pulse energy
- spectral distribution
- temporal radiation pulse properties
- ➤ coherence
- ➤ polarization

Focus size and position

Wave front sensors

Wavefront Beam Parameters Zernike Aberrations Profiles MTF Data Options Beamtype Wavelength 12.60 [nm] C Near Gauss Other Set Grid C Clip Reference Cells Horizontal 11 Manual Vertikal 15 C Tracking C Automatic Expand Margin 0 [Cells] Select Sub-Appertures C Manual C Circle Automatic C AI Current Image Offset [Counts] Offset C Threshold [Counts] [%] C Corners of Image undefined [Counts] Profile View Intensity Enhance 20 C Tiles C Arrows Spots

B. Keitel et al . J. Synchrotron Rad. 23, 43-49 (2016);

Wavefront sensors (WFS) at FLASH

Operation principle

Alignment pinhole

The actual beam is compared to a reference wave

- Intensity and phase information in single shot
- Amplitude of each spot \rightarrow local intensity
- Position of each spot \rightarrow local slope, wavefront phase

Software MrBeam (by IFNANO) allows evaluation of

- Intensity profile / beam size
- Waist position and size
- Wavefront and Zernike aberrations
- Beam divergence
- Beam quality product M²
- Pointing stability
- Back propagation of intensity profiles for any position in the beam
- Back propagation of partial coherent beam using Gaussian or Besselian coherence functions is available

Wavefront sensors (WFS) at FLASH

Continuous collaboration with industry since 2005

- Since 2005 first WFS for the XUV wavelength range (8 40 nm) in operation at FLASH
- Since 2019 in-vacuum WFS with high NA for highly divergent XUV beams

• In 2006 start of development for compact XUV (4 – 30 nm) WFS

Compact integrated system since 2023

WFS for visible (350 – 1100 nm)

First WFS at FLASH, still in operation

Courtesy B. Keitel

Wavefront sensor benchmarking

Compare to imprints

Wave front sensors need space ...

Permanent wave front sensing setup incorporated at beamline FL23 and FL24 at FLASH2

to user experiment

differential pumping unit

Successful first proof-of-principle demonstrator:

- WFS in the side arm for alignment of KB optics without disturbing users
- two mirrors at 22.5°
- limited wavelength range (8 nm up to 40 nm)
- focus positions between 1.5 m and 3.5 m can be measured
- conform results in the side arm and straight direction

New design:

- need to incorporate WFS into every beamline using bendable KB optics
- WFS be located 45° beneath the differential pumping unit
- one mirror under 22.5° increases intensity
- WFS is located before focus position to avoid a large arm

Compact WFS

Integrated in the focussing chamber

DESY. Stefan Düsterer | 13.6.2023 | EuPRAXIA workshop

Beam position and pulse energy

Screens and "GMD"

Beam position / shape

Important for machine setup and beamline alignment

- Ce:YAG crystals (no powder due to aging)
- motorized and pneumatic
- mounted at 30 deg
- **Diamond** are more robust screens for small, intense spots

Pulse energy

Gas monitor detector (GMD)

electron pulsed signals

A. A. Sorokin et al, J. Synchrotron Rad. 26, 1092-1100 (2019);

Pulse energy

Gas monitor detector (GMD)

Split electrodes ... allows to measure the beam position

ion current signals

A. A. Sorokin et al, J. Synchrotron Rad. 26, 1092-1100 (2019);

GMD in action

Statistical pulse energy analysis -> number of SASE modes

Spectrum

Photo ionization and MHz line camera

Online Photoionization Spectrometer (OPIS) @ FLASH2.

Measure the wavelength with photo electron spectroscopy

- No optical elements which can be damaged or degrade
- Basically 100% transmission
- Self-calibration capability using Auger electrons
- Low signal level to avoid space charge

M. Braune, et al , J. Synchrotron Rad. 25, 3-15 (2018);

OPIS: Raw data

$$E_{pho} = E_{kin} + E_{bin}$$

OPIS: Reconstruction

G.Hartmann, et al Sci. Rep. 12, 20783 (2022);

Ę

OPIS: Data cleaning

G.Hartmann, et al Sci. Rep. 12, 20783 (2022);

21

OPIS: Data cleaning

G.Hartmann, et al Sci. Rep. 12, 20783 (2022);

OPIS: Latent space

Wavelength

Intensity

- Baseline
- Interleaving

Pointing

OPIS: Obtain central wavelength

VLS-Spectrometer with MHz line camera

> KALYPSO: bunch train #: 1 Tuning 50 256 pixels, 50 µm pitch 100 14 bit ADC, 2.7 Mfps 0th order 150 Bunch # to BL1-3 6nn 250 **KALYPSO** Developed within ARD Matter & Technology 300 60nm between KIT, DESY and HZDR 350 Low-latency continuous read-out with up to 2.7 7.2 7 7.1 7.3 7.4 7.5 7.6 7.7 7.8 Wavelength (nm) MHz rep rate => cw and feedback capability bunch train #: 1 **FINISHED** • Under development version 3: 50 1st order up to 1024 pix, up to 5 MHz, better signal-to-noise 100 150 Bunch 500 **VLS** grating 250 300 350 G. Brenner et al., 7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 Wavelength (nm) Nucl. Instr. and Meth A 635, 99-103 (2011).

C. Gerth, et al. J. Synchrotron Rad. 26, 1514 - 1522 (2019);

Temporal properties

Pulse duration and arrival time

THz streaking principle

F

THz Streaking - observables

What can we learn from the signal?

THz streaking at FLASH

Summary of the last years

Short and long pulses

R.Ivanov at al., Journal of Physics B, 53 (2020)

Correlation to other pulse parameters

I.Bermudez at al., Optics Express 29, 10491-10508 (2021)

- Pulse duration along the gain curve *M. Bidhendi,* Appl. Sci. **12**, 7048 (2022)
- Arrival time studies

R.Ivanov at al., J. Synchrotron Rad., 25 (2018) R.Ivanov et al, Opt. Express 31, 19146 (2023)

- "parasitic measurement" option *R.Ivanov et al,* Opt. Express 31, 19146 (2023)
- 2 color operation

E. Schneidmiller, Appl. Sci. 13, 67 (2023)

- Pulse duration of FEL harmonics
- Comparison to electron diagnostic (TDS)

Testing "parasitic" measurements

Use only a small fraction of the FEL beam

Comparison TDS vs THz streaking

Use electron diagnostics to measure XUV pulse duration / shape

C. Behrens at al, Nature Communications 5, 3762 (2014)

Comparison TDS vs THz streaking

Thanks to Ch. Behrens and G. Goetzke

Summary

SASE FEL needs pulse resolved diagnostics !

- Focal spot size / position
- Energy, pointing
- Spectrum
- Pulse duration (~ 30 fs to ~ 300 fs)
- Next steps
 - More automated analysis (AI ...)
 - More non-invasive and "little-invasive" diagnostics
 - Measure very short pulses (0.5-20 fs) -> angular streaking
 - After 2025 ... FLASH1 -> SEEDED HIGH REPRATE FEL

Thanks to

Acknowledgments

M. Bidhendi, R. Ivanov, I. Bermudez, M. Yurkov, E. Schneidmiller, G. Brenner, J. Roensch-Schulenburg, M. Kuhlmann, U. Frühling, M. K. Czwalinna, M. Brachmanski, S. Kreis, J. Müller, S. Schulz, A-L Calendron, M. Degenhardt, B. Keitel, K. Tiedtke, M. Braune, G. Goetzke, Ch. Behrens

UPV

J. Liu

. . .

N. Kabachnik A. Kasansky

F. Kaertner, M. Pergament, M. Kellert, S. Reuter

EHU

G. Hartmann, P. Feuer-Forson

for your

Two-color operation @ FLASH2

2 pulses with 2 colors from the same electron bunch

E. Schneidmiller et al., Appl. Sci. 13, 67 (2023)

Two-color operation @ FLASH2

Arrival time fluctuations

Relative arrival time

Evolution of pulse energy and pulse duration

Ę

Error sources @ different pulse duration ranges

a) Fluctuating SASE XUV spectrum

30 fs <
$$\tau_{EEI}$$
 < 200 fs (FWHM)

Special operation modes

Ę

Double pulse in deep saturation regime

THz generation

Schematic layout of the THz-streaking setup. It consists of two parts:

- the THz production via tilted pulse-front in a LiNbO3 crystal using an IR laser (1030 nm)
- and the UHV chamber located above the optical table, where the FEL and THz beams are collinearly overlapped and focused into the interaction region

Further detectors

- HAMP, XGMD, Round-Robin GMD
- KALYPSO

Parameters for current version 2.1

- 256 pixels, 50 µm pitch
- 14 bit ADC, 2.7 Mfps

Parameters for prototype version 2.5

- 1024 pixels, 25 µm pitch
- 14 bit ADC, 2.2 Mfps

Other DESY groups:

- **Polarimeter** ("CookieBox"), P04 @PETRA III 16-eTOF spectrometer instrument for monitoring the polarization by measuring the photoelectron angular distribution
- Percival ("Pixelated Energy Resolving CMOS Imager, Versatile and Large")
 back-thinned to access its primary energy range of 250eV to 1keV, the roughly 10x10cm2, 3520 x 3710 pixel monolithic sensor up to 120Hz

Percival (courtesy C. Wunderer)

Wavefront sensors (WFS) at FLASH

How a wavefront sensor works

Wave front reconstruction:

The displacement of the spot centroid $(x_c, y_c)_{ij}$ with respect to a known reference position $(x_r, y_r)_{ij}$ is a measure for the spatial average of the Poynting vector *S*. $(\beta_{x,y})_{ij}$ approximates the wavefront gradient.

$$S_t \propto \left(\frac{\frac{\partial w}{\partial x}}{\frac{\partial w}{\partial y}}\right)_{ij} = \beta_{ij} = \frac{1}{f} \begin{pmatrix} x_c - x_r \\ y_c - y_r \end{pmatrix} ij \quad \beta^{x,y}(x,y;z_0) = \frac{\partial w(x,y;z_0)}{\partial x,y} = \sum_{k=1}^{L} c_k(z_0) \frac{\partial P_k(x,y)}{\partial x,y}$$

The wavefront is reconstructed by a modal approach, via a least squares fit with a polynomial basis P_k . Zernike polynomials are well suited for the reconstruction at FLASH due to the circular beam shape and good representation of typical focusing mirror aberrations.

Numerical propagation:

Since the sensor records both intensity and phase, it allows also the prediction of intensity distributions for any position in the beam course by numerical propagation. The IFNANO software MrBeam features Fresnel-Kirchhoff propagation:

$$I(x, y, z) = \left| \frac{ik}{2\pi z} \iint_{\infty} \sqrt{I(x', y')} e^{ikw(x', y')} \cdot e^{\frac{ik[(x-x')^2 + (y-y')^2]}{2z}} dx' dy' \right|^2$$

