Electro-Optic Sampling for Bunch Length Measurement

E. Roussel, C. Szwaj, M. Le Parquier, C. Evain, S. Bielawski

Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molécules, Lille, FRANCE

WP13 EuPRAXIA electron and photon diagnostics June 12-13, 2023

DEOS: experimental test 0000

How to record the electron bunch shape ?

 \rightarrow probe its electric field...

- \odot/\odot crystal near the e- bunch
 - "very direct" measurement, access to the whole e-field
 - intense electric field

- $\odot\,$ detection far from the e- bunch
- (c) (c) "high-pass" filter, only access to fast-evolving component
 - \odot less intense field (V-kV/cm)

In both cases, need for:

(1) few ps/sub-ps resolution; (2) single-shot; (3) MHz+ acquisition rate

DEOS: theoretical framework

DEOS: experimental tes 0000 Conclusion O

Electro-optic sampling of electric field: principle

Simple cross-correlation of the THz and optical pulses based on the Pockels effect:

- An external electric field modifies the refractive indexes of a birefringent crystal (EO crystal).
- The THz-induced birefringence is probed using a laser pulse.
- ▷ Multi-THz bandwidth obtained: limited by crystal speed and laser pulse duration.

Free-propagating THz pulses (Time-domain spectroscopy, TDS): [Q. Wu & X.-C. Zhang, Appl. Phys. Lett. 67 (24), (1995)] Scanned EO in accelerators: [Wilke et al., Phys. Rev. Lett. 88, 124801 (2002)], [Katayama et al., App. Phys. Lett. 100, 111112 (2012)]

Introduction
00000

DEOS: experimental tes 0000 Conclusion O

Single-shot recording ? \rightarrow using chirped laser pulses

Principle: time-to-wavelength mapping (aka **spectral decoding**)

First demonstration using OSA readout: [Z. Jiang & X.-C. Zhang, Appl. Phys. Lett., 72, 1945 (1998)] Applications in accelerators: [Müller et al., Phys. Rev. ST Accel. Beams 15, 070701 (2012)], [Hiller et al., IPAC'13, p. 500 (2013)]

Potential applications:

- Monitoring non-repetitive phenomena, e.g. in accelerators
- Time Domain Spectroscopy in situations where scanning is unpractical:
 - for monitoring fast irreversible processes
 - ▷ for non linear THz science using high-power THz sources (with low repetition rate)

DEOS: experimental test 0000

(20-year-old) Temporal resolution issue: the "time \times bandwidth" limit (1)

Time-resolution limitation (20-year-old problem) [Sun, Jiang & Zhang, Appl. Phys. Lett. 73, 2233 (1998)]

DEOS: theoretical framewor 000000 DEOS: experimental tes 0000

Temporal resolution issue: the "time \times bandwidth" limit (2)

Time-resolution (assuming an infinitely fast crystal) [Sun, Jiang & Zhang, Appl. Phys. Lett. 73, 2233 (1998)]

Examples of temporal resolution issue

• at short timescales e.g. e-bunch near field at EuXFEL

• for long observation windows e.g. TDS

6

Introduction
00000

DEOS: experimental test 0000 Conclusion O

A new point of view: calculation of Fourier-domain transfer functions

Derivation of the transfer functions

 $\begin{array}{rcl} & {\sf Input field} & {\cal E}(t) & \leftrightarrows & {\tilde {\cal E}}\left(\Omega\right) \\ {\sf Measurements} & Y_{1,2}(t) & \leftrightarrows & Y_{1,2}^{'}\left(\Omega\right) \approx {\cal H}_{1,2}\left(\Omega\right) \times {\tilde {\cal E}}\left(\Omega\right) \end{array}$

with $H_{1,2}\left(\Omega\right)=h_{1,2}\cos\left(B\Omega^{2}+\phi_{1,2}
ight)$, the transfer functions !

 $h_{1,2}$, $\phi_{1,2}$ depend on the crystal and waveplates orientation, B = 1/2C with $C = \partial \omega / \partial t$ the laser chirp.

calculation details in [Roussel et al., Light Sci Appl 11, 14 (2022)]

Introduction
00000

DEOS: experimental tes 0000

"Classical" EO configuration

Transfer functions $H_{1,2}$ for the "classical" crystal & waveplates orientations

 $egin{aligned} &\mathcal{H}_1\left(\Omega
ight)=\cos\left(B\Omega^2
ight)\ &\mathcal{H}_2\left(\Omega
ight)=-\cos\left(B\Omega^2
ight) \end{aligned}$

- $\bullet\,$ clear existence of zeros at particular frequencies problem ill-posed $\to\,$ "deconvolution" impossible using one channel
- "classical" EO configuration: zeros of H_1 and H_2 at the same frequencies

 \rightarrow find an other configuration to separate the zeros ?

DEOS: theoretical framework

DEOS: experimental tes 0000 Conclusion O

transfer functions

Our strategy: Diversity Electro-Optic Sampling (DEOS)

Goal: interleave the zeros of transfer functions

$$egin{aligned} &\mathcal{H}_1\left(\Omega
ight) = \sqrt{2}\cos\left(B\Omega^2 + rac{\pi}{4}
ight) \ &\mathcal{H}_2\left(\Omega
ight) = -\sqrt{2}\cos\left(B\Omega^2 - rac{\pi}{4}
ight) \end{aligned}$$

in practice: crystal and waveplates orientation ≠ "classical" EO
problem well-posed → "deconvolution" possible using the two channels

DEOS: theoretical framework

DEOS: experimental test 0000 Conclusion O

Algorithm for input field reconstruction: Maximum Ratio Combining (MRC)

Simple approach: retrieve the input field \tilde{E} from the measured EO signals $\tilde{Y}_{1,2}$ using either $\tilde{E}_R(\Omega) = \frac{\tilde{Y}_1(\Omega)}{H_1(\Omega)}$ or $\tilde{E}_R(\Omega) = \frac{\tilde{Y}_2(\Omega)}{H_2(\Omega)}$ depending on frequency Ω

Refined algorithm

Use a combination of the two EO signals $\tilde{Y}_{1,2}$ with **optimal** weights

Maximum Ratio Combining (MRC) method:

$$ilde{E}_R = rac{H_1 ilde{Y}_1 + H_2 ilde{Y}_2}{|H_1|^2 + |H_2|^2}$$

Inspired by: [Han, Boyraz & Jalali, Microwave Theory and Techniques, IEEE Transactions on 53, 1404-1408 (2005)]

DEOS: theoretical framework

DEOS: experimental tes 0000

Reconstruction algorithm: numerical test

- Old limitation $\tau = \sqrt{t_{laser} \times t_{window}}$
- New resolution limit $au \sim t_{\textit{laser}}$?
- Time window *t_{window}*: no limit (theoretically)

Introduction
00000

DEOS: experimental test 0000 Conclusion O

Time resolution of DEOS

DEOS reconstruction versus time window τ_{w} :

DEOS: theoretical framework

DEOS: experimental test

Conclusion O

Experimental investigations using a table-top experiment

Terahertz signal generated by optical rectification of laser pulses

DEOS: experimental test 0000

Comparison between DEOS and scanned EOS

[Roussel et al., Light Sci Appl 11, 14 (2022)]

DEOS: theoretical framework

DEOS: experimental test

Conclusion O

Studies of e-bunch shapes at the European XFEL

DEOS: theoretical framewor 000000 DEOS: experimental test

Conclusion O

Preliminary results at the European XFEL

Train of 300 e-bunches over 250 bursts.

- $\, \bullet \,$ bunch duration: ~ 218 fs RMS
- \circ arrival time jitter: \sim 58 fs

DEOS: experimental test 0000

Conclusion

Diversity Electro-Optic Sampling (DEOS)

- ▷ High temporal resolution (limited by laser and crystal) for arbitrary long windows.
- > Table-top proof-of-principle tests + preliminary experiment at EuXFEL (DESY).

Related projects in machine physics

- PhLAM/DESY project: investigate DEOS + photonic time-stretch readout
- ▷ PhLAM/FERMI: TeraFERMI THz beamline (high power, low rep. rate source)
- ▷ PhLAM/KARA/SOLEIL (French-German ANR-DFG ULTRASYNC project).
- > Feasibility studies at TELBE and FELBE.
- > Advanced diagnostics for the European TWAC project (THz Waveguide Accelerating Cavity).

Other milestones

- ▷ High acquisition rate with photonic time-stretch readout.
- High sensitivity EOS.
- ▷ Cost reduction, using 1550 nm wavelength.

Fundings: CPER Photonics4Society, CEMPI, CNRS Momentum (METEOR), ANR/DFG (ULTRASYNC), EIC Pathfinder (TWAC).