Institute of Optics & Quantum Electronics JENA

Friedrich Schiller University

Friedrich-Schiller-Universität Jena

Diagnostics for Laser-Wakefield Accelerators

Malte C. Kaluza

Institute of Optics and Quantum Electronics, FSU Jena, Germany

Helmholtz-Institute Jena

Institute of Optics & Quantum Electronics JENA

- (One of the) Central goal(s) of EuPRAXIA:
 - Realize a free-electron laser based on electron pulses from a LWFA
- What are the requirements to reach this goal?
 - Provide a stable/reliable/controllable
 GeV-class LWFA-driven electron source
- How does a LWFA work?
- Which e-beam parameters are essential?
 - How are they correlated with accelerator structure (plasma wakefield)?
 - How can they be measured?
- Beyond existing (and possible) diagnostics:
 - machine-learning algorithms, Bayesian optimization models
- Summary and outlook

Institute of Optics & Quantum Electronics JENA

- (One of the) Central goal(s) of EuPRAXIA:
 - Realize a free-electron laser based on electron pulses from a LWFA
- What are the requirements to reach this goal?
 - Provide a stable/reliable/controllable
 GeV-class LWFA-driven electron source
- How does a LWFA work?
- Which e-beam parameters are essential?
 - How are they correlated with accelerator structure (plasma wakefield)?
 - How can they be measured?
- Beyond existing (and possible) diagnostics:
 - machine-learning algorithms, Bayesian optimization models
- Summary and outlook

HI JENA Helmholtz Institute Jena

Δ

Institute of Optics &

Quantum Electronics JENA

Friedrich Schiller University

- N_e / MeV 1 10⁹ 10 6 5 · 3 5 10⁸ шц 0 -5 -10200 400 E, MeV b -20 -15 -10-25 A. Pukhov et al., APB 74, 355 (2002)
- Acceleration of electrons in a (laser-driven) plasma wave

• Injection of background electrons into accelerating phase of the plasma wave

μm

Laser Wakefield Acceleration of Electrons @ JETI: Setup

- (One of the) Central goal(s) of EuPRAXIA:
 - Realize a free-electron laser based on electron pulses from a LWFA
- What are the requirements to reach this goal?
 - Provide a stable/reliable/controllable
 GeV-class LWFA-driven electron source
- How does a LWFA work?

Which e-beam parameters are essential?

- How are they correlated with accelerator structure (plasma wakefield)?
- How can they be measured?
- Beyond existing (and possible) diagnostics:
 - machine-learning algorithms, Bayesian optimization models
- Summary and outlook

- energy spectrum:
 - energy of (mono-energetic?) peak
 - background?
- charge

- pulse duration
- source size
- divergence
- pointing (stability)

- (One of the) Central goal(s) of EuPRAXIA:
 - Realize a free-electron laser based on electron pulses from a LWFA
- What are the requirements to reach this goal?
 - Provide a stable/reliable/controllable
 GeV-class LWFA-driven electron source
- How does a LWFA work?
- Which e-beam parameters are essential?
 - How are they correlated with accelerator structure (plasma wakefield)?
 - How can they be measured?
- Beyond existing (and possible) diagnostics:
 - machine-learning algorithms, Bayesian optimization models
- Summary and outlook

- High-resolution images of plasma wave:
 - Formation and evolution of e-bunch
 -> e-pulse duration in the plasma
- Visualize evolution of accelerator structure (plasma wave)
 - visualize point of injection of e-bunch
 -> acceleration length -> peak energy
- Detection of betatron radiation
 -> source size of electron pulse
- Measure intensity evolution of driving main pulse via RECR
 - Indirect measurement of acceleration fields
 -> peak energy of e-bunch
- Visualize transverse scattering of laser pulse
 -> spatio-temporal couplings in main pulse
 -> e-beam direction/steering

- (One of the) Central goal(s) of EuPRAXIA:
 - Realize a free-electron laser based on electron pulses from a LWFA
- What are the requirements to reach this goal?
 - Provide a stable/reliable/controllable
 GeV-class LWFA-driven electron source
- How does a LWFA work?
- Which e-beam parameters are essential?
 - How are they correlated with accelerator structure (plasma wakefield)?
 - How can they be measured?
- Beyond existing (and possible) diagnostics:
 - machine-learning algorithms, Bayesian optimization models
- Summary and outlook

- High-resolution images of plasma wave:
 - Formation and evolution of e-bunch
 -> e-pulse duration in the plasma
- Visualize evolution of accelerator structure (plasma wave)
 - visualize point of injection of e-bunch
 -> acceleration length -> peak energy
- Detection of betatron radiation aser Pulse
 -> source size of electron pulse
- Measure intensity evolution of driving main pulse via RECR
 - Indirect measurement of acceleration fields
 -> peak energy of e-bunch
- Visualize transverse scattering of laser pulse
 -> spatio-temporal couplings in main pulse
 -> e-beam direction/steering

transverse optical probing

main pulse

electrons X-rays,...

transverse optical probing

main pulse

imaging lens

electrons X-rays,...

probe pulse

gas-jet

Helmholtz Institute Jena

• Transverse probing of B-fields in under dense plasma with linearly polarized probe pulse: when $\vec{k}_{\text{probe}} \parallel \vec{B} \Rightarrow$ different η for circularly polarized probe-components ("Faraday-effect")

 \Rightarrow Rotation of probe polarization:

$$\phi_{\rm rot} = \frac{e}{2m_{\rm e}c} \int \frac{n_{\rm e}(\vec{r})}{n_{\rm cr}} \vec{B}(\vec{r}) \cdot \frac{\vec{k}_{\rm probe}}{k_{\rm probe}} \,\mathrm{d}s$$

- \Rightarrow measure ϕ_{rot} to deduce B-field distribution!
 - J. A. Stamper et al., PRL (1975)

Institute of Optics & Quantum Electronics JENA Friedrich Schiller University

MCK et al., PRL 105 115002 (2010)

Friedrich Schiller University

Electron bunch length: $\Delta z = 4 \ \mu m$ $\tau_{FWHM} = (6\pm 2) \ fs, \tau_{RMS} = (2.5\pm 0.9) \ fs$

A. Buck, MCK et al., Nature Physics 7, 543 (2011)

- (One of the) Central goal(s) of EuPRAXIA:
 - Realize a free-electron laser based on electron pulses from a LWFA
- What are the requirements to reach this goal?
 - Provide a stable/reliable/controllable
 GeV-class LWFA-driven electron source
- How does a LWFA work?
- Which e-beam parameters are essential?
 - How are they correlated with accelerator structure (plasma wakefield)?
 - How can they be measured?
- Beyond existing (and possible) diagnostics:
 - machine-learning algorithms, Bayesian optimization models
- Summary and outlook

- High-resolution images of plasma wave:
 - Formation and evolution of e-bunch
 -> e-pulse duration in the plasma
- Visualize evolution of accelerator structure (plasma wave)
 - visualize point of injection of e-bunch
 -> acceleration length -> peak energy
- Detection of betatron radiation aser Pulse
 -> source size of electron pulse
- Measure intensity evolution of driving main pulse via RECR
 - Indirect measurement of acceleration fields
 -> peak energy of e-bunch
- Visualize transverse scattering of laser pulse
 -> spatio-temporal couplings in main pulse
 -> e-beam direction/steering

Institute of Optics & Quantum Electronics JENA

Institute of Optics & Quantum Electronics JENA

Helmholtz Institute Jena

Institute of Optics & Quantum Electronics JENA

Helmholtz Institute Jena

Institute of Optics & Quantum Electronics JENA

Institute of Optics & Quantum Electronics JENA

Helmholtz Institute Jena

Institute of Optics & Quantum Electronics JENA

Institute of Optics & Quantum Electronics JENA

Institute of Optics & Quantum Electronics JENA

- (One of the) Central goal(s) of EuPRAXIA:
 - Realize a free-electron laser based on electron pulses from a LWFA
- What are the requirements to reach this goal?
 - Provide a stable/reliable/controllable
 GeV-class LWFA-driven electron source
- How does a LWFA work?
- Which e-beam parameters are essential?
 - How are they correlated with accelerator structure (plasma wakefield)?
 - How can they be measured?
- Beyond existing (and possible) diagnostics:
 - machine-learning algorithms, Bayesian optimization models
- Summary and outlook

- High-resolution images of plasma wave:
 - Formation and evolution of e-bunch
 -> e-pulse duration in the plasma
- Visualize evolution of accelerator structure (plasma wave)
 - visualize point of injection of e-bunch
 -> acceleration length -> peak energy
- Detection of betatron radiation
 -> source size of electron pulse
- Measure intensity evolution of driving main pulse via RECR
 - Indirect measurement of acceleration fields
 -> peak energy of e-bunch
- Visualize transverse scattering of laser pulse
 -> spatio-temporal couplings in main pulse
 -> e-beam direction/steering

Laser Wakefield Acceleration of Electrons: Betatron Radiation

Institute of Optics & Quantum Electronics JENA

Institute of Optics & Quantum Electronics JENA

- One of the) Central goal(s) of EuPRAXIA:
 - Realize a free-electron laser based on electron pulses from a LWFA
- What are the requirements to reach this goal?
 - Provide a stable/reliable/controllable
 GeV-class LWFA-driven electron source
- How does a LWFA work?
- Which e-beam parameters are essential?
 - How are they correlated with accelerator structure (plasma wakefield)?
 - How can they be measured?
- Beyond existing (and possible) diagnostics:
 - machine-learning algorithms, Bayesian optimization models
- Summary and outlook

- High-resolution images of plasma wave:
 - Formation and evolution of e-bunch
 -> e-pulse duration in the plasma
- Visualize evolution of accelerator structure (plasma wave)
 - visualize point of injection of e-bunch
 -> acceleration length -> peak energy
- Detection of betatron radiation aser Pulse
 -> source size of electron pulse
- Measure intensity evolution of driving main pulse via RECR
 - Indirect measurement of acceleration fields
 -> peak energy of e-bunch
- Visualize transverse scattering of laser pulse
 -> spatio-temporal couplings in main pulse
 -> e-beam direction/steering

Institute of Optics & Quantum Electronics JENA

Friedrich Schiller University

Non-invasive diagnostic of intensity evolution during interaction based on relativistic electron cyclotron resonance

M. B. Schwab, MCK et al. Phys. Rev. AB 23, 032801 (2020)

Institute of Optics & Quantum Electronics JENA

- (One of the) Central goal(s) of EuPRAXIA:
 - Realize a free-electron laser based on electron pulses from a LWFA
- What are the requirements to reach this goal?
 - Provide a stable/reliable/controllable
 GeV-class LWFA-driven electron source
- How does a LWFA work?
- Which e-beam parameters are essential?
 - How are they correlated with accelerator structure (plasma wakefield)?
 - How can they be measured?
- Beyond existing (and possible) diagnostics:
 - machine-learning algorithms, Bayesian optimization models
- Summary and outlook

- High-resolution images of plasma wave:
 - Formation and evolution of e-bunch
 -> e-pulse duration in the plasma
- Visualize evolution of accelerator structure (plasma wave)
 - visualize point of injection of e-bunch
 -> acceleration length -> peak energy
- Detection of betatron radiation aser Pulse
 -> source size of electron pulse
- Measure intensity evolution of driving main pulse via RECR
 - Indirect measurement of acceleration fields
 -> peak energy of e-bunch
- Visualize transverse scattering of laser pulse
 - -> spatio-temporal couplings in main pulse
 - -> e-beam direction/steering

Observation of Stimulated Raman Sidescattering, diagnostic for spatio-temporal couplings of main pulse (PFT) and electron beam steering

Institute of Optics &

Quantum Electronics JENA

Friedrich Schiller University

27

C. Zepter, MCK et al. Phys. Rev. Research **5**, L012023 (2023)

- (One of the) Central goal(s) of EuPRAXIA:
 - Realize a free-electron laser based on electron pulses from a LWFA
- What are the requirements to reach this goal?
 - Provide a stable/reliable/controllable
 GeV-class LWFA-driven electron source
- How does a LWFA work?
- Which e-beam parameters are essential?
 - How are they correlated with accelerator structure (plasma wakefield)?
 - How can they be measured?
- Beyond existing (and possible) diagnostics:
 - machine-learning algorithms, Bayesian optimization models
- Summary and outlook

- When electron pulse cannot be measured non-invasively
 - Deduce/estimate e-beam parameters from other parameters (which can be measured non-invasively)
 - Possible, when exact correlations between parameters are known (not yet!)
 - Use machine-learning algorithms + Bayesian optimization models to find such correlations

Institute of Optics & Quantum Electronics JENA

- (One of the) Central goal(s) of EuPRAXIA:
 - Realize a free-electron laser based on electron pulses from a LWFA
- What are the requirements to reach this goal?
 - Provide a stable/reliable/controllable
 GeV-class LWFA-driven electron source
- How does a LWFA work?
- Which e-beam parameters are essential?
 - How are they correlated with accelerator structure (plasma wakefield)?
 - How can they be measured?
- Beyond existing (and possible) diagnostics:
 - machine-learning algorithms, Bayesian optimization models
- Summary and outlook

Summary and Outlook

- LWFA-based FEL as one of the central goals of EuPRAXIA seems within reach
- essential for its optimization:
 - high-resolution diagnostics for
 - driving laser,
 - plasma/accelerator structure,
 - particle pulses,
 - find correlations between different parameters also using machine-learning methods
- Feedback loops for stabilization of laser and particle pulses.

Thank you for your attention!

Institute of Optics &

Quantum Elect

• Generation of few-cycle probe pulses @ JETI via frequency broadening

JETI input pulses: 32 fs, ~1 mJ

- \Rightarrow (5.9±0.4) fs @ 300 μ J, (2.8±0.4) fs @ 200 μ J
- ⇒ shadowgraphy, Faraday-rotation, interferometry, ... possible

M. Schwab, MCK *et al.*, Applied Physics Letters **103**, 191118 (2013) D. Adolph, MCK *et al.*, Applied Physics Letters **110**, 081105 (2017)

Helmholtz Institute Jena

Institute of Optics &

Quantum Electronics JENA

Institute of Optics & Quantum Electronics JENA

Friedrich Schiller University

- Polarimetry: Visualization of e-bunches via B-fields
- Variation of delay between pump and probe pulse:
 ⇒ Evolution of e-pulse generation!

• First online observation of e-bunch generation!

A. Buck, MCK et al., Nature Physics 7, 543 (2011)

Institute of Optics & Quantum Electronics JENA

Friedrich Schiller University

- Polarimetry: Visualization of e-bunches via B-fields
- Variation of delay between pump and probe pulse:
 ⇒ Evolution of e-pulse generation!
- First online observation of e-bunch generation!
- A. Buck, MCK et al., Nature Physics 7, 543 (2011)

 Shadowgraphy: Visualization of the plasma wave

Institute of Optics & Quantum Electronics JENA

Friedrich Schiller University

 Shadowgraphy: Visualization of the plasma
 wave

 Variation of plasma density
 ⇒ change of plasma wave length

$$\lambda_{\rm p} = v_{\rm ph} T_{\rm p} \approx \frac{2\pi c}{\omega_{\rm p}} = 2\pi c \sqrt{\frac{\varepsilon_0 m_{\rm e}}{n_{\rm e} e^2}}$$

Institute of Optics & Quantum Electronics JENA

Friedrich Schiller University

• Polarimetry + Shadowgraphy:

Measurement of e-bunch position within the plasma wave:

e-pulse is indeed accelerated within the 1st wave period!

Institute of Optics & Quantum Electronics JENA

Friedrich Schiller University

"well behaved"

"beam loading" dominated

"single bubble" regime

"multi bubble" regime

Elongation of 1st plasma wave period starts before injection of electrons.

A. Sävert, MCK et al. Phys. Rev. Lett. **115**, 055002 (2015)

no "beam loading" but main pulse amplification.

 $\lambda_p^*\approx\lambda_p$ Helmholtz Institute Jena

36

 $\lambda_p^* \approx \lambda_p \left(1 + \frac{a_0^2}{2}\right)^{1/4}$ HIJENA 37

Helmholtz Institute Jena

A. Sävert, MCK et al. Phys. Rev. Lett. 115, 055002 (2015)