GRB Localization
Analysis

With Fermj Large Areg Telescope




Training program

Michela Negro is working with my group at Goddard to perform a study of the location accuracy of
Fermi-LAT to gamma-ray bursts. Michela is using data from gamma-ray bursts detected by LAT, in
addition to instrument simulations to evaluate the systematic uncertainty on the LAT-determined
location for gamma-ray bursts. This work is extremely important, as an understanding of the total
(statistical + systematic) location uncertainty is essential for optimizing follow up observations by
other observatories. The goal of this work it to evaluate systematic uncertainties as a function of the
position of the gamma-ray burst in the LAT field of view and of the energy. This will be the first
detailed evaluation of LAT-localization systematics for gamma-ray bursts.

Julie McEnery
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Gamma Ray Bursts

* Flashes of gamma rays + Extremely energetic explosions
(in a few seconds as much energy as the Sun in its life)

* Observed in distance galaxes
(billions of light years away from Earth)

* Extremely rare
(a few per galaxy per million years)

* First detected in 1967 by Vela satellites

e In 1997 ; :
 first detection of the afterglows (X-ray & optical) =N
 Redshift measurements -> mesurements of the distance

* Nov 21 2013: detailed data about the strongest GRB
->130427A (April 27, 2013)
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Forward and Reverse shock

 Initial burst of gamma-rays (a few seconds) -> Collimated (2-20 degrees) jets (99.95% of c)
* Main Mechanism of gamma-ray production = Inverse Compton

* Emition at longer wavelengths (hours- days) = Afterglow
* Energy notradiated = matter
* Matter collides with the ISM -> relativistic Foreward shock wave
* Asecond Reverse shock propagate back
* electrons in the shock wave radiate as syncrotron emission (X-ray, radio, optic)
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Long GRBs

more than 2 s

70% of GRBs
region of star
formation

linked to a core-
collapse supernova
origin: death of
massive stars
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Classification

Gamma-Ray Bursts (GRBs): The Long and Short of It

Long gamma-ray burst
(>2 seconds’duration)

' A red-giant
v star collapses
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~Decoming so
dense that it
expels its outer
Jayersina

Torus
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Short gamma-ray burst
(<2 seconds’duration)
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The resulting torus

Number of Bursts

*Possibly neutron stars

Short GRBs

lessthan 2 s

30% of GRBs
regions of no star
formation

linked to masive
stars

origin: NS+NS or
NS+BH
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Fermi LAT & GBM

Launch: June 11 2008, NASA
Orbit: - circular

- 565 km altitude

- 25.6° inclination

GBM

(Gamma-ray Burst Monitoring)
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Localization Analysis

Using Fermi Science Tools for an unbinned likelihood analysis:

* Run gtmktime to select good time intervals (e.g. when the spacecraft is outside
the SAA, has a livetime > 0, and is pointing at your area of interest)

* Run gtselect to further cut on energy and radius around some location on the sky

* Run gtltcube to create the livetime cube

* Run gtexpmap to generate the exposure map

* Make an xml model that includes all the sources in your region of interest plus the
GRB

* Run gtdiffrsp to compute the diffuse response

* Perform a likelihood fit (gtlike)

* Generate a ts map (gttsmap)

» Extract the error radii from the ts map

* the goal: Give an estimate for the Systematic error!
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Example of Localization Analysis:
GRB130427A

GRB130427A

Output of gtlike:

TS =2 (loglike(M1) - loglike(MO0))
M1 = model with GRB included
M2 = background model

Related to the probability that the source is

Max TS: 1855.96789551 not part of the model
Great detection!!
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Example of Localization Analysis:
GRB130427A

GRB130427A

68 percent C.L. error: 0.011°
90 percent C.L. error: 0.018°
95 percent C.L. error: 0.024°
99 percent C.L. error: 0.041°
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TS map = ROI - background model
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Well localized in this case!
But what about systematics?




Example 2: GRB140329295

thtle TS Value: nOt Wll detected Maximum TS= 19.0 at (RA, Dec)=(145.88, -32.18)
Error radius (deg): 0.22 (68%), 0.39 (90%) —
.‘- 1
—14

= -
Greater error radii ‘
(dashed lines)

Now:
* only statistical error is well
known for Fermi detections;

To Do List

» Search for a method to
estimate the systematic error!

* Simulate GRBs at different 0
and look at how systematics
change.
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