' W

EELLITIT
EREEET]
EEEEEEE]

|

&
| S

T

Optimal, Multi-Dimensional Resource Provisioning for Scientific Workloads
(MidTerm / Work-In-Progress)

Remo Andreoli, PhD Student
Tommaso Cucinotta, Supervisor
Marco Mambelli, FNAL Supervisor

Sant’Anna School of Advanced Studies

The provisioning problem at Fermilab

e Scientists submit jobs to the batch system (GlideinWMS)
e GlideinWMS has access to multiple sites (grids, cloud providers, local datacenter, ...

e Each site provides a catalog of machine types (Vms, containers, physical hosts, ...

e GlideinWMS matches: [~
o Job Requirements @’ ool

'g VO Frontend o L%-&l
Submit job o
e GlideinWMS reserves a machine w/_\- - E

based on the matChlng reSult Get result
e GlideinWMS schedules the jobs onthe

v
58

o Resource Capabilities of a machine type {

. . . Legenda |
provisioned machine B Reglar Condor -@ @

[glideinwMs

Image from: https: //glldelnwms fnal. gov/doc prd/documentatlon htmI

2 Remo Andreoli

Optimal resource provisioning challenge

e As of now, GlideinWMS provisions the jobs according to their HW requirements

e However, it is unable to make sophisticated provisioning decisions:

o How to schedule the jobs to get the results in the shortest amount of time?

o How to provision the jobs with the minimal amount of rental cost?

e Conflicting objectives: generally you pay more to wait less

e W.LP.: Let's consider rental cost only

3 Remo Andreoli

Classical approach: Mixed-integer Linear Programming

e Translate the real-world problem in to a mathematical model of form:

maximize clx
xeZ™
subject to Ax < b,
x>0

e X is a vector of incognitas (called the decision variables)
e cis a vector of coefficients for the objective
e A and b are a matrix and vector, respectively, of coefficients that define the search space

e Exploit MILP solver for a guaranteed optimal solution to your problem

4 Remo Andreoli

Scalability issues with MILP

e Our provisioning problem is related to the classical bin-packing problem:

Pack items of different sizes into a finite number of bins,
each of a fixed given capacity, in a way that minimizes
the number of bins used

e But with an additional dimension (We don’t know the capacity of the “bin” a priori)
e The bin-packing problem is NP-hard:

o No known polynomial-time algorithm to solve it

o Requires an exhaustive search and evaluation of numerous potential solutions

5 Remo Andreoli

System model (1)

e Set of jobs to be provisioned

e Properties of a job:

i R?P UeRt Number of CPU cores required
R:?] EM ¢ R+ Megabytes of memory required
Vied: < L
BeR8 e, 11 GPU needed
’ D; ~ Pareto(xp,;) Job duration, where x,, = 1h

In our case, a job is (part of) a simulation

6 Remo Andreoli

System model (2)

e Set of machine types (blueprints) to be instantiated

e Properties of a blueprint:

r CEPYU e R Number of CPU cores available
CMEM ¢ Rt Megabytes of memory available
CEPU € {0,1} GPU available
Vbe B : < .
p € RT Rental cost (usd/min)
) € RT Maximum rental period (min)
L@y €N Waiting time (min)
.1';‘ i@& YQ
e g W.I.P. Currently not in use
15, e é

Remo Andreoli

System model (3)

e Set of “plain” instances on which to place the jobs

e Blueprint vs instance:

o Ablueprint defines a machine type
(i.e., an AWS EC2 catalog entry, an OpenStack flavor)

o Aninstance is the realization/instantiation of a blueprint

(i.e., the ECZ2 instance, the Openstack server)

il

8 Remo Andreoli

Optimal Provisioner Workflow

93

EE G
— = = Fg‘"at“ S"'}/ = =)
B — (B0 -8

Number of Optimal Provisioner Rental cost
Available
Instances

e problem formulator: Pyomo
e MILP solver: Gurobi

) Remo Andreoli

Decision Variables

:) 1 Job j is placed on Instance 7
VieJViel:z;;=

0 otherwise

{z}| = N;- N;
1 Instance 7 is in use
Viel:y = = r;
o { 0 otherwise \/ i
JEJ
Hy} = Ni

; 1 Instance 7 is of Blueprint b
VielINbe B:z, =

0 otherwise

[{z}| = N - Np
Vi€ I:6; € RT = Cost of running Instance i (in dollar)
{0} = Ni

Remo Andreoli

Problem Constraints (1)

e Avoid double placement

e Assign a blueprint type only if the instance is in-use

Zl‘j‘i =0 VieJ
=y
Z;I:J-_,- > Y Viel

Nz = Vi€ I

Remo Andreoli

Problem Constraints (2)

e Characterization of the monetary decision variables

0; > x5 DY 2 Ch VjeJViel
beB

Remo Andreoli

Problem Constraints (3)

e Satisfy hardware requirements

Z 1{51’(

Jj€J

Z ij}«::\/

jeJ

; 2 CRU.
Lji < (Y t<ib

beB

: § : MEM
Ly < 0[T <b

beB

; § G PU
.IJ 1 < (t A, b

beB

%44

GPU
~ R§FY)

Vied

Viegl

VjeJViel

Remo Andreoli

Problem Formulation
minimize 261

el
subject to Z.I'J_, = Vjeld
el
Tii < Ui VieJViel
D o B Viel
jeJ
> zp=us Viel
beB
ZHJ('PU cxj; < Z ('b(,'P(' B Viel
JEJ beB
Z RJ\IEM g S Z CMEM ., Viel
jeJ beB
zji <) (CFPY - zip) + (1 - RSFY) VieJViel
beB
6; > 74D~y zip-Cy VieJViel
beB
z;,; € {0,1} Vje JViel
y; € {0,1} Viel
zip € {0,1} VieI,Vbe B
a€{0,1}

Remo Andreoli

Experiments: scalability (cost only)

e #JOBS in [1:50]
e #BLUEPRINTS in [1:10]

e #INSTANCES in {#JOBS/3, #JOBS/4, #JOBS/5}

300 A

250 A

N

o

o
!

Solve Time (s)
=
wm
[=]

Problem complexity (#Dv + #Constr)

Server (56 cores)

Remo Andreoli

- 2% = -0 ® oue
8
® 4 opt. found
{ e " fea. found
T T T T T T
0 5000 10000 15000 20000 25000

What now?

e Experiment with realistic job set (i.e., not randomly generated)
e Experiment with warm-start to speed-up solve time

e Compare with heuristics and approximation algorithms

o Afeasible solution may still be “enough” to make a “good” provisioning decision

What’s next?

e |Integration with GlideinWMS

o (+comparison with current heuristic, which only take into account the CPU requirement)

e Multi-objective optimization (cost + time, together)

Remo Andreoli

Questions?

Remo Andreoli

