
Optimal, Multi-Dimensional Resource Provisioning for Scientific Workloads
(MidTerm / Work-In-Progress)

Remo Andreoli, PhD Student
Tommaso Cucinotta, Supervisor

Marco Mambelli, FNAL Supervisor

Sant’Anna School of Advanced Studies

● Scientists submit jobs to the batch system (GlideinWMS)

● GlideinWMS has access to multiple sites (grids, cloud providers, local datacenter, …)

● Each site provides a catalog of machine types (Vms, containers, physical hosts, …)

● GlideinWMS matches:
○ Job Requirements

○ Resource Capabilities of a machine type

● GlideinWMS reserves a machine
based on the matching result

● GlideinWMS schedules the jobs on the
provisioned machine

Image from: https://glideinwms.fnal.gov/doc.prd/documentation.html

The provisioning problem at Fermilab

2 Remo Andreoli

Optimal resource provisioning challenge
● As of now, GlideinWMS provisions the jobs according to their HW requirements

● However, it is unable to make sophisticated provisioning decisions:

○ How to schedule the jobs to get the results in the shortest amount of time?

○ How to provision the jobs with the minimal amount of rental cost?

● Conflicting objectives: generally you pay more to wait less

● W.I.P. : Let’s consider rental cost only

3 Remo Andreoli

Classical approach: Mixed-integer Linear Programming
● Translate the real-world problem in to a mathematical model of form:

● x is a vector of incognitas (called the decision variables)

● c is a vector of coefficients for the objective

● A and b are a matrix and vector, respectively, of coefficients that define the search space

● Exploit MILP solver for a guaranteed optimal solution to your problem

4 Remo Andreoli

Scalability issues with MILP
● Our provisioning problem is related to the classical bin-packing problem:

● But with an additional dimension (We don’t know the capacity of the “bin” a priori)
● The bin-packing problem is NP-hard:

○ No known polynomial-time algorithm to solve it

○ Requires an exhaustive search and evaluation of numerous potential solutions

5 Remo Andreoli

Pack items of different sizes into a finite number of bins,
each of a fixed given capacity, in a way that minimizes

the number of bins used

System model (1)
● Set of jobs to be provisioned

● Properties of a job:

● In our case, a job is (part of) a simulation

6 Remo Andreoli

System model (2)
● Set of machine types (blueprints) to be instantiated

● Properties of a blueprint:

7 Remo Andreoli

W.I.P. Currently not in use

System model (3)
● Set of “plain” instances on which to place the jobs

● Blueprint vs instance:
○ A blueprint defines a machine type

(i.e., an AWS EC2 catalog entry, an OpenStack flavor)

○ An instance is the realization/instantiation of a blueprint
(i.e., the EC2 instance, the Openstack server)

8 Remo Andreoli

Optimal Provisioner Workflow

9 Remo Andreoli

…

…

Number of
Available
Instances

…

Optimal Provisioner

● problem formulator: Pyomo
● MILP solver: Gurobi

Formulator Solver

Rental cost

Decision Variables

10 Remo Andreoli

Problem Constraints (1)
● Avoid double placement

● Assign a blueprint type only if the instance is in-use

11 Remo Andreoli

Problem Constraints (2)
● Characterization of the monetary decision variables

12 Remo Andreoli

Problem Constraints (3)
● Satisfy hardware requirements

13 Remo Andreoli

Problem Formulation

14 Remo Andreoli

Experiments: scalability (cost only)

15 Remo Andreoli

Server (56 cores)

● #JOBS in [1:50]
● #BLUEPRINTS in [1:10]
● #INSTANCES in {#JOBS/3, #JOBS/4, #JOBS/5}

What now?
● Experiment with realistic job set (i.e., not randomly generated)

● Experiment with warm-start to speed-up solve time

● Compare with heuristics and approximation algorithms
○ A feasible solution may still be “enough” to make a “good” provisioning decision

16 Remo Andreoli

● Integration with GlideinWMS
○ (+comparison with current heuristic, which only take into account the CPU requirement)

● Multi-objective optimization (cost + time, together)

What’s next?

Questions?

17Remo Andreoli

