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Abstract

This project focuses on the development of a summing module using Vivado
on the RedPitaya board. The primary objective was to create a Python library
that simplifies communication with the FPGA, enabling the summation of two
arrays of values. This library is intended to support future projects in advancing
the GQuEST experiment. Additionally, a GitHub repository was established to
facilitate the learning process for individuals interested in mastering FPGAmethods
for array summation. The results demonstrate the effectiveness of the developed
module and its potential applications in various computational tasks.
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1 Introduction

1.1 Theoretical Background

Over the past century, one of the most significant challenges in theoretical physics has
been the development of a quantum description of gravity [1]. Physicists have tradition-
ally understood gravity as the curvature of spacetime, a concept introduced by Einstein’s
General Theory of Relativity. This curvature is caused by the presence of energy and
momentum. On the other hand, quantum mechanics provides a framework for under-
standing the behavior of particles at the most fundamental level, describing phenomena
with remarkable precision.

However, integrating these two powerful formalisms has proven to be exceptionally
challenging. Several structural incompatibilities arise when attempting to formulate grav-
ity within a quantum mechanical framework:

• Non-linearity of Gravity: Unlike the linear equations governing quantum me-
chanics, the equations of General Relativity are highly non-linear. This non-
linearity complicates the superposition principle, a cornerstone of quantum theory.

• Background Independence: General Relativity describes gravity as a dynamic
entity that shapes the spacetime fabric itself, making it background-independent.
In contrast, quantum mechanics typically operates within a fixed spacetime back-
ground, leading to a fundamental discord between the two theories.

• Scale Discrepancies: Gravity is significant at macroscopic scales, while quantum
effects dominate at microscopic scales. This vast difference in the energy and length
scales at which these phenomena are observable poses a significant challenge in
modeling gravity’s local behavior within a quantum framework.

In recent years, one promising development in this field is the concept of holography.
Originating from String Theory, the holographic principle suggests that the description
of a volume of space can be thought of as encoded on a lower-dimensional boundary to
the region. This principle highlights a discrepancy in the degrees of freedom between
gravitational models and quantum mechanical models.

Building on these insights, physicists like Verlinde and Zurek have proposed that by
applying the holographic principle locally, it is possible to detect fluctuations in longitu-
dinal distances. These fluctuations are hypothesized to arise from variations in vacuum
energy, which are influenced by holographic degrees of freedom.
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1.2 GQuEST

The GQuEST (Gravity from Quantum En-
tanglement of Space-Time) collaboration aims
to verify this holographic conjecture. This initia-
tive seeks to address the challenge of detecting
quantum gravity by exploring the entanglement
properties of spacetime itself. By investigating
these quantum entanglements, GQuEST hopes to
uncover measurable effects that could provide ev-
idence for a quantum theory of gravity.
The core components are the Michelson-Morley
Interferometer, a well-established tool in ex-
perimental physics, renowned for its ability to
detect minute changes in distance through the
interference of light waves. This makes it ideal
for observing the predicted metric fluctuations
caused by quantum gravitational effects.

Figure 1: The GQuEST experiment

The configuration includes two co-located interferometers. This dual configuration
is crucial for distinguishing between genuine signals correlated with metric fluctuations
and uncorrelated noise, which could otherwise obscure the results. When gravitational
waves or metric fluctuations pass through the interferometers, they induce slight changes
in the lengths of the interferometer arms. These changes cause shifts in the interference
pattern of the light beams, which can be precisely measured. The readout is perfomed
with Homodyne tecnique.
Homodyne readout is a technique used to measure the phase shift of light waves with high
precision. In the context of the GQuEST experiment, it helps in detecting the minute
phase changes induced by metric fluctuations.
This method is highly sensitive and can provide continuous real-time data on the phase
shifts occurring within the interferometers.

2 FPGA and Vivado Software

In this section we will explain in details what are the FPGA and why are the most
suitable approach for this type of problems. In particular we’ll explore the most important
charasteristics of the FPGA boards in section 2.1.Finally in section 2.2, we’ll describe
charateristics of VIVADO, a software used for create designs suitable for FPGAs.

2.1 Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays (FPGAs) are integrated circuits designed to be con-
figured by the user after manufacturing. Unlike traditional fixed-function devices like
Application-Specific Integrated Circuits (ASICs), FPGAs offer the flexibility of hard-
ware reconfiguration, allowing designers to tailor the chip for specific applications. This

4



adaptability makes FPGAs an ideal solution for tasks that require high performance, par-
allel processing, and low-latency responses, such as signal processing, real-time control,
cryptographic functions, and scientific computing.

2.1.1 Basic Structure and Operation of FPGAs

At the core of an FPGA are programmable logic blocks, interconnects, and I/O (In-
put/Output) blocks. These components can be configured to perform complex combina-
torial and sequential logic operations. The FPGA fabric consists of:

• Logic Blocks: These are the fundamental building blocks of FPGAs, typically
composed of Look-Up Tables (LUTs), flip-flops, and multiplexers. LUTs allow the
FPGA to implement any logical function by storing truth tables, while flip-flops
enable sequential logic by storing state information.

• Interconnects: Programmable interconnects allow different logic blocks to com-
municate. This highly customizable routing fabric enables the FPGA to form com-
plex circuits by linking logic blocks together.

• I/O Blocks: These blocks interface with external components, such as sensors,
memory, or communication systems, and support various I/O standards to accom-
modate different signal voltages and speeds.

An FPGA’s configuration is stored in SRAM (Static Random-Access Memory) or flash
memory, which means it can be reprogrammed multiple times. This allows engineers to
iterate on their designs rapidly, making FPGAs particularly useful for prototyping and
applications that need regular updates or adjustments.

2.1.2 Parallelism and Flexibility of FPGAs

One of the defining features of FPGAs is their ability to execute multiple operations
in parallel. Traditional CPUs and GPUs process instructions sequentially, albeit with
some degree of parallelism (e.g., through multi-core processors or SIMD instructions). In
contrast, FPGAs offer true hardware-level parallelism, where different parts of the FPGA
fabric can execute independent or coordinated tasks simultaneously.

For example, in an image processing application, different sections of an image can
be processed in parallel on the FPGA, dramatically reducing the overall computation
time. Similarly, in communication systems, multiple signal streams can be processed
concurrently, making FPGAs ideal for high-throughput tasks.

This parallelism is especially beneficial in real-time systems where processing speed
and responsiveness are critical. By leveraging the reconfigurable nature of FPGAs, de-
signers can create custom data paths that precisely match the application’s computational
needs, ensuring minimal latency and maximum throughput.

2.1.3 Hardware Resource Utilization

FPGAs allow designers to maximize performance by leveraging the vast array of config-
urable hardware resources. The efficient use of these resources can significantly improve
the performance of cross-correlation and other signal processing tasks. A well-optimized
design involves striking a balance between computational units, memory resources, and
communication paths. Below are key aspects of resource utilization on FPGAs:
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• DSP Slices: DSP (Digital Signal Processing) slices are specialized hardware blocks
designed for arithmetic operations like multiplication and accumulation. In cross-
correlation, a large number of multiplications are required for each time-lag. FPGAs
can instantiate multiple DSP slices to compute these operations in parallel, allowing
for high-speed, low-latency computation. Modern FPGAs, such as those from Xilinx
and Intel, contain hundreds or even thousands of DSP slices, enabling massively
parallel processing of signal data. By using these DSP slices efficiently, the FPGA
can compute complex operations like multiply-accumulate (MAC) in fewer clock
cycles. Furthermore, many FPGAs support floating-point operations or fixed-point
arithmetic with high precision, depending on the application requirements.

• Block RAM (BRAM): Block RAM is a critical resource for buffering and storing
input signals, intermediate results, and final cross-correlation outputs. FPGAs pro-
vide a distributed block RAM architecture that can be configured to support various
memory sizes and access patterns. For cross-correlation, signals often need to be
stored for multiple time shifts, requiring efficient memory management. BRAM al-
lows for fast, concurrent access to data, which is vital for maintaining high through-
put in parallel processing environments. Designers can also use dual-port BRAM
to allow simultaneous read and write operations, further enhancing performance.
Efficient memory organization and pipelining techniques can ensure that memory
bandwidth does not become a bottleneck during computation.

• Distributed Memory and LUTs: In addition to block RAM, FPGAs also feature
distributed memory implemented using Look-Up Tables (LUTs). These can be
used for smaller, low-latency storage needs, such as storing coefficients or state
information. In cross-correlation, LUTs may be used to hold precomputed values
or intermediate sums, allowing the FPGA to access this data with minimal delay.
While distributed memory offers less storage capacity than BRAM, its flexibility
and proximity to computational elements make it suitable for fast, small-scale data
operations.

• Parallelism: One of the greatest strengths of FPGAs is their ability to implement
massive parallelism. Cross-correlation involves repeated calculations across many
time-lags, which can be computed simultaneously using parallel hardware architec-
tures. Each lag can be processed in a separate hardware pipeline, ensuring that
multiple correlations are computed in parallel. By taking full advantage of the
FPGA’s parallelism, designers can achieve significant performance gains, enabling
real-time processing even for high-bandwidth signals. In contrast to traditional
processors, which are bound by sequential instruction execution, FPGAs allow for
the simultaneous execution of hundreds or thousands of operations, depending on
the available logic resources.

• Pipelining: Pipelining is a key technique in FPGA design that allows multiple
stages of a computation to overlap in time. By dividing the cross-correlation com-
putation into several stages, each stage can process different parts of the data
concurrently. For example, one stage might handle the multiplication, another the
accumulation, and a final stage could normalize the results. This reduces the over-
all computation time and ensures that the FPGA can handle high-throughput data
streams with minimal latency. Well-designed pipelines also allow for optimal use of
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resources, as different operations can be executed in parallel across multiple pipeline
stages.

• Latency and Throughput Optimization: FPGAs offer flexibility in controlling
both latency and throughput. For applications where real-time performance is crit-
ical, minimizing latency is essential. This can be achieved through careful pipeline
design and minimizing memory access delays. On the other hand, high-throughput
applications benefit from optimizing parallel data paths and using as many pro-
cessing elements as possible in parallel. Balancing these two factors depends on the
specific needs of the application. For example, a radar system might prioritize low
latency to ensure timely detection, while a communication system might prioritize
high throughput to process large volumes of data efficiently.

• Clock Management and Power Efficiency: FPGA designs must carefully man-
age clock signals to ensure that all components operate efficiently and within timing
constraints. FPGAs feature multiple clock domains, and designs can benefit from
clock-gating and dynamic clock scaling to reduce power consumption in areas where
high-speed operation is not required. Power efficiency is a critical concern in em-
bedded systems, and FPGA designs can be optimized to minimize power usage
without sacrificing performance by shutting down unused blocks or lowering clock
speeds in certain regions of the design.

By intelligently utilizing the available hardware resources, FPGAs can achieve sig-
nificant gains in both performance and power efficiency. Careful attention to resource
allocation, parallelism, and memory management allows for high-speed computation that
is essential for real-time cross-correlation applications. Furthermore, the flexibility of FP-
GAs allows designers to adjust and optimize the design to meet the specific needs of each
application, whether it be for high-performance scientific instruments, communication
systems, or real-time signal processing.

2.2 Introduction to Vivado Module Development

Vivado is a comprehensive FPGA design suite from Xilinx, widely used for designing and
implementing digital logic systems. It provides a complete environment for FPGA design,
from hardware description language (HDL) coding and simulation to synthesis, imple-
mentation, and bitstream generation for Xilinx FPGAs. Vivado supports both Verilog
and VHDL, the two most common hardware description languages, allowing developers
to write custom modules to meet specific design requirements.

Vivado module development involves several key stages, including design entry, simu-
lation, synthesis, implementation, and verification. These steps are critical to ensure that
the developed hardware functions as expected within the constraints of timing, power,
and resource usage.

VIVADO supports many different types of FPGA boards, the one used during this in-
ternship is called RedPitaya 125-14 and which needs some custom modules to be adapted
for the VIVADO environment, in this work these are implemented by [2].

2.2.1 Design Entry

The process begins with writing the HDL code, which describes the hardware’s function-
ality at the register-transfer level (RTL). In Vivado, developers can create new modules
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from scratch or reuse existing modules from the Xilinx IP library. Each module typically
defines a specific hardware function, such as arithmetic units, state machines, or mem-
ory controllers. Modules can be connected to form more complex systems, and Vivado’s
graphical interface allows for easy management of these connections.

2.2.2 Synthesis and Implementation

Once the design is verified in simulation, Vivado translates the HDL description into a
netlist of logic gates through a process called synthesis. This process converts the high-
level behavioral description into a gate-level implementation suitable for FPGA hardware.
Following synthesis, the design is implemented by mapping the logic onto the physical
resources of the FPGA, such as lookup tables (LUTs), flip-flops, DSP slices, and block
RAMs. Vivado’s implementation tools optimize the design for performance and resource
utilization, ensuring that the module meets timing constraints.

2.2.3 Timing and Resource Constraints

An essential aspect of module development in Vivado is the management of timing and
resource constraints. Timing constraints define the required performance metrics, such as
clock frequency and signal propagation delays. These constraints are critical for ensuring
that the module operates reliably at the target clock speeds. Similarly, resource con-
straints ensure that the design fits within the available hardware resources on the FPGA.
Vivado provides tools for constraint management and optimization, enabling developers
to balance performance, power, and resource usage. In our case the module for time and
clock managment was provided by Pau Gómez [2].

2.2.4 Bitstream Generation and Programming

After the synthesis and implementation phases, Vivado generates a bitstream file, which
can be loaded onto the FPGA to configure its hardware. This bitstream contains the
binary representation of the entire design, including the custom modules. Once the bit-
stream is programmed into the FPGA, the module becomes part of the FPGA’s hardware
logic, ready to interact with other system components in real-time.

Vivado module development is a powerful and flexible process, enabling designers to
create custom digital hardware tailored to specific applications. From system-on-chip
(SoC) designs to high-performance computing, Vivado provides the necessary tools for
developing efficient, scalable, and high-performance FPGA modules.

3 Internship Aim

The primary aim of this internship was to gain hands-on experience in FPGA devel-
opment, focusing on the design and implementation of custom hardware modules using
the Vivado Design Suite. This internship has provided me with a descrete understand-
ing of the FPGA design flow, from hardware description language (HDL) coding to the
synthesis, implementation, and verification of complex digital systems.

A key object of this internship was the understanding of complex problems in hardware
design and their solution, focusing on the module choice and understanding of the VHDL
and Verilog languages.
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3.1 Structure of the work

The internship work started from a simple blinking led project to understand the logic
and hardware structure of the RedPitaya and then focused on a deeper understanding of
the hardware.

The main steps were:

(a.) Blinking Led Project: Understanding how to access hardware resources

(c.) DMA Access project: Accessing the FPGA memory using the the DMA method

(b.) Sum in Arrays: Performing sums between arrays.

But before going in detail on the projects an explanation of what are the most im-
portant and recurring blocks in FPGAs designs is provided in order to easely present the
further results.

4 Vivado IP blocks

In this section main Vivado IP blocks, useful for the subsequent analysis and project, are
introduced and then described in detail. Reflecting this form, this section is divided into
three subsection referred to different blocks.

Axi Gpio The AXI GPIO provides a general purpose input/output interface to the
AXI (Advanced eXtensible Interface) interface. This 32-bit soft IP core is designed to
interface with the AXI4-Lite interface.

This block is fundamental the interact with external input/output source, it has two
channels and it is not possible to add more of them.

Direct Memory Access Direct memory access (DMA) is a feature of computer sys-
tems that allows certain hardware subsystems to access main system memory indepen-
dently of the central processing unit (CPU)[3].

The DMA is a crucial block to store data inside the FPGA memory, the functioning
is similar to portal between the external environment and the memory.
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Figure 2: AXI DMA

In the DMA is possible to decide whether it is necessary for reading, writing or both
by uncheking/checking the correspondent toggle:

Figure 3: AXI DMA toggles

Processing System AMD provides the Processing System IP Wrapper for the Zynq™
7000 to accelerate the design and its configuration for the embedded products.

The Processing System IP is the software interface around the Zynq 7000 Processing
System. The Zynq 7000 family consists of a system-on-chip (SoC) style integrated pro-
cessing system (PS) and a Programmable Logic (PL) unit, providing an extensible and
flexible SoC solution on a single die.

The Processing System IP Wrapper acts as a logic connection between the PS and the
PL while assisting in integrating custom and embedded IPs with the processing system
using the Vivado™ IP integrator [4]
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Figure 4: Zynq Processing System

5 Projects

The following section is divided into four main subsection reflecting the structure of the
work.

5.1 Blincking Led Project

The first project focuses on accessing the RedPitaya hardware by creating a design that
makes the LED blink. This project’s purpouse is to access the basic functionality of the
FPGA througth the VIVADO design.

During the project creation it is necessary to add the .xdc file to configure the hardware
logic of the RedPitaya, this is a crucial step also for the next projects. [2]

The needed blocks are Zynq 7 Processing System and AXI GPIO along with the
Concat, Slice and Interconnect.

The first step is to configure the DDR and Fixed IO on the processing system and
it can be completed by pressing on the ”Run Block Automation” tab. To create the
required clock, reset and AXI Connect infrastructure it is possible to run the connection
automation by pressing on the ”Run Connection Automation Tab”. Only the AXI GPIO
needs to be configured manually so it not to be checked in the menu.

After the connection automation the design becomes like this:
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Figure 5: New Design

On the AXI GPIO instance the channel needs to be configured as outputs of 1 and
32 bits, the channel1 is used as a trigger and the channel2 to increment the counter value.

The Zynq instance needs the PL fabric clock to be configured to 50 MHz and usually
this parameter is set as default if not it is possible to configure it under Clock Configura-
tion and then PL Fabric Clocks.

The next step is to create an HDL counter. It is possible to create a new RTL(Register
Transfer Level) module by using a fileAdd Source -¿ Add or create design source, then
naming it and choose the language, the code is available here 7.1.

To add the module to the design rigth-clik on the design and select Add Module. In
the constraints file it is necessary to uncomment the lines from 166 to 177 which define
and configure the FPGA ports connected to the LEDs.

The information are sended to the LED using a port ( it is possible to create a port
by pressing simultaneusly CTRL and k):
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Figure 6: Port Creation

Now it is necessary to connect the MSB of the HDL counter to the output port and
for this purpose two blocks are necessary:

• Slice IP

• Concat IP

The Slice IP needs to accept a 32 bit wide input and return the MSB:

Figure 7: Slice Configuration
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The Concat bundle 8 inputs of 1 bit each:

Figure 8: Concat Configuration

Then it is possible to wire the AXI GPIO, HDL counter, Slice IP, Concat IP and led o
port. The final desing looks like this:

Figure 9: Final Design

After the creation of the HDL design wrapper and bitstream it is possible to transfer
the bit, hwh and tcl file into the RedPitaya.
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The first action that needs to be performed is the reset of the board, along with the
loading of the desing using the bit file.

import pynq

pynq.PL.reset()

ol = pynq.Overlay("LED_blink.bit")

Then it is possible to design the blinking frequency, the clock frequency and config-
uring the channels by running:

blinkFreq = 1

clkFreq = 50e6

incr = int(2**32 * blinkFreq / clkFreq)

#Enable counter

ol.axi_gpio_0.channel1.write(val=1, mask=0x1)

#Set counter increment

ol.axi_gpio_0.channel2.write(val=incr, mask=0xffffffff)

5.2 DMA Access project

This goal of this project is to test the memory resources present on the PS of the FPGA
On the RedPitaya is present a 512MB DDR memory, which serves as RAM for the Zynq
PS but it can also be used by the Zynq PL to exchange data.

A PYNQ Jupyter Notebook will be used to preload waveforms to RAM memory, si-
multaneously trigger the waveform generation/acquisition and plot the acquired samples.
[2]

The necessary blocks are: Zynq 7 Processing System, Processor System Reset, AXI
GPIO, 2x AXI Interconnect, 2x AXI Direct Memory Access, RedPitaya-125-14-clk, RedPitaya-
125-14-adc, RedPitaya-125-14-dac.

Once all the instances are created the tab Block Automation will automatically create
the route to the DDR and the FIXED IO ports.

The Zynq 7 needs to be configured to accept an HP Slave AXI interface( double click
on Zynq 7 then PS-PL Configuration then HP Slave AXI Interface ) and enable the HP0
and the HP1 with data width 64 bit.
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Figure 10: Zynq Processing System Configuration

The AXI GPIO can be configured as the previous project with two channel, the first
will accept 1-bit output and the second a 32-bit output. Both of the AXI Interconnect
needs to be configured to have 2 slaves and 1 master interface:

Figure 11: AXI Interconnect Configuration
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And also the both the DMAs needs to be configured to accept a read and a write
channel.

Figure 12: AXI DMA Configuration

Then it is possible to connect the clock and the reset wires.
In order to control the data streams going into and out of the DMA engine a simple HDL
module is necessary, this module will be necessary to hold the incoming and outgoing
data streams until trigger signal is received a rise the AXI stream tlast line when the last
data sample gets acquired.

The module in Verilog is available here 7.2.
On the design four stream controller are necessary and they needs to be connected as

follow:
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Figure 13: Stream Control New Configuration

In order to access the data by the Zynq 7 to the DMAs the MM2S and S2MM interfaces
needs to be connected.

To makes it possible for the FPGA to read the ADC, DAC and Clock constraints is
necessary to uncomment the following sections in the xdc file:

• ADC (lines from 8 to 56)

• DAC (lines from 59 to 90)

• Clock (lines from 180 to 183)

At this point is possible to create the inputs and outputs ports for the blocks:

• RedPitaya-125-14-clk

• RedPitaya-125-14-adc

• RedPitaya-125-14-dac

Each port can be created with the shorcut CTRL+K. To connect the memory mapped
interfaces is possible to run the Connection Automation tab and select AXI GPIO, DMA
and Zynq Interfaces and the final design becomes like this:
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Figure 14: Final Design

The last step before generating the bitstream is to check the address editor and
automatically assign an address space to all the interfaces, this can be easely done by
rigth-clicking on Network 0 and select Assign All

Figure 15: Assigning new addresses to ports

The next step is performed on the Jupyter Notebook, once a new notebook is created
and the bit file of the project is already transfered on the FPGA is possible to reset the
design:

import pynq

import numpy as np

import matplotlib.pyplot as plt

pynq.PL.reset()

ol = pynq.Overlay("DMA_transfer.bit")
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The is possible to set the parameters:

#Parameters

samples = 10000

clk_freq = 125e6

#Time array

t = np.arange(samples) / clk_freq

#Gaussian

t_center = 0.5 * samples / clk_freq

t_width = 0.15 * samples / clk_freq

gaussian = np.exp(-(t - t_center)**2 / (2 * t_width**2))

#Sin/Cos

freq = 200e3

sin = np.sin(2 * np.pi * freq * t)

cos = np.cos(2 * np.pi * freq * t)

#Waveforms

waveform_out_1= np.array((2**15 - 1) * sin * gaussian, dtype=np.int16)

waveform_out_2= np.array((2**15 - 1) * cos * gaussian, dtype=np.int16)

and then allocate the memory:

#Parameters

samples = 10000

clk_freq = 125e6

#Time array

t = np.arange(samples) / clk_freq

#Gaussian

t_center = 0.5 * samples / clk_freq

t_width = 0.15 * samples / clk_freq

gaussian = np.exp(-(t - t_center)**2 / (2 * t_width**2))

#Sin/Cos

freq = 200e3

sin = np.sin(2 * np.pi * freq * t)

cos = np.cos(2 * np.pi * freq * t)

#Waveforms

waveform_out_1= np.array((2**15 - 1) * sin * gaussian, dtype=np.int16)

waveform_out_2= np.array((2**15 - 1) * cos * gaussian, dtype=np.int16)

The previously created channels1 is now set to low to avoid any problems during data
transmission, while on the channel2 the number of samples is sended.
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ol.axi_gpio_0.channel1.write(val=0, mask=0x1) #Trig low

ol.axi_gpio_0.channel2.write(val=samples, mask=0xffffffff) #Set samples

ol.axi_dma_0.recvchannel.transfer(input_buffer_1)

ol.axi_dma_0.sendchannel.transfer(output_buffer_1)

ol.axi_dma_1.recvchannel.transfer(input_buffer_2)

ol.axi_dma_1.sendchannel.transfer(output_buffer_2)

ol.axi_gpio_0.channel1.write(val=1, mask=0x1) #Trig high

ol.axi_dma_0.recvchannel.wait()

ol.axi_dma_0.sendchannel.wait()

ol.axi_dma_1.recvchannel.wait()

ol.axi_dma_1.sendchannel.wait()

Finally is possible to plot the data:

plt.figure(figsize=(12,6))

plt.plot(t * 10**6, input_buffer_1 / 2**15, label = "ch1")

plt.plot(t * 10**6, input_buffer_2 / 2**15, label = "ch2")

plt.xlabel("Time (us)")

plt.ylabel("Input Voltage (V)")

plt.grid()

plt.legend()

plt.show()

Figure 16: DMA Plot

5.3 Summing Arrays

The next section focuses on the sum of two arrays in an FPGA.
The necessary blocks are: Zynq 7 Processing System, RedPitaya Clock, Processor System
Reset, 2 AXI DMA, AXI GPIO.
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Figure 17: Initial design

The RedPitaya Clock needs to be connected externally so it is necessary to create the
correspondent ports, this step can be completed using the CTRL+K command.

Figure 18: Axi GPIO port connectios

The Run Block Automation tab will automatically connect the DDR and FIXED IO.
Next is necessary to configure the DMA(Direct Memory Access). The goal is to minimize
the number of DMAs used, in this case is possible to use only two. The first DMA will
use both the writing and the reading channel like the previous project, while the second
one will only need the reading channel configuration.

22



Figure 19: Receiving DMA configuration

The AXI GPIO module synchronize the DMAs using a trigger along with the number
of samples which is necessary to communicate to the FPGA the length of the array, to
perfom this tasks the AXI GPIO needs to be configured with the usual 1-bit channel and
the 32-bit channel.

The first channel has only 1-bit wire (0 or 1), and it will be the trigger, while the
second will be the sample number channel.

The HP0 interface on the Zynq7 needs to be set on. To turn it on double-click on the
block and select the PS-PL Configuration:
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Figure 20: HP0 Configuration

Now the clock and the reset wire can be connected.

The tab Run Connection Automation will automatically run all the necessary connec-
tions, only the AXI GPIO needs to be wired manually. Following this step would bring
the design to look like this:

Figure 21: AXI GPIO configuration

The next step is to use the Stream Controller to control the flow of the data going into
the Stream Adder. This task can be performed using a modified version of the previously
shown stream ctl.vhd. The code is available here 7.3. While the adder is available here
7.4.
The final design should looks like this:
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Figure 22: Final Configuration

To test this project once it’s on the RedPitya this script returns as a output [ 3 4 5 6
7 8 9 10 11 12]:

import pynq

pynq.PL.reset()

ol = pynq.Overlay("summingArrays.bit")

import numpy as np

array0 = np.array([2,2,2,2,2,2,2,2,2,2])

array1 = np.array([1,2,3,4,5,6,7,8,9,10])

samples = len(array0)

input_buffer_1 = pynq.allocate(shape=(samples,), dtype=np.int16)

output_buffer_1 = pynq.allocate(shape=(samples,), dtype=np.int16)

output_buffer_2 = pynq.allocate(shape=(samples,), dtype=np.int16)

np.copyto(output_buffer_1, array0)

np.copyto(output_buffer_2, array1)

ol.axi_dma_0.sendchannel.transfer(output_buffer_1)

ol.axi_dma_1.sendchannel.transfer(output_buffer_2)

ol.axi_dma_0.recvchannel.transfer(input_buffer_1)

ol.axi_gpio_0.channel1.write(val=1, mask=0x1)

ol.axi_gpio_0.channel2.write(val=10, mask=0xFFFFFFFF)

print(input_buffer_1)

On the GitHub repo it is possible to find the library to perform this commands
automatically.[5]
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5.4 Results

The outcome of this project led to the development of a comprehensive Python library
specifically designed to facilitate seamless communication with the FPGA.
This library’s primary function is to enable the efficient summation of two arrays of
values, thereby streamlining computational processes. The library is intended to serve
as a foundational tool for subsequent projects, particularly those aimed at advancing
the GQuEST experiment. By providing a robust and user-friendly interface, the library
significantly reduces the complexity involved in FPGA programming and operations.
In addition to the library, a detailed GitHub repository was established. This repository
includes extensive documentation, example codes, and tutorials all aimed at expediting
the learning curve for individuals and teams interested in mastering FPGA methods for
array summation. The repository serves as a valuable resource, offering insights and
practical guidance to both novice and experienced developers. Through these efforts, the
project not only achieved its immediate goals but also laid the groundwork for future
innovations and developments in the field.

6 Conclusions and future works

Further works may focus on the implementation and extension of the library to include
a correlator module, which could significantly enhance the experiment’s analytical capa-
bilities. The addition of a correlator module is anticipated to allow for a more precise
and comprehensive analysis of the experiment results, thereby providing deeper insights
into the quantum states being studied.

In conclusion, the development of the summing library marks a significant step for-
ward for the GQuEST experiment. By focusing on the implementation of a correlator
module in future works, we can enhance the precision and depth of our analyses, ulti-
mately contributing to the advancement of quantum state estimation and the broader
field of quantum computing.

7 Codes

In this section all the files used during the tutorial will be displayed.

7.1 counter.vhd

module counter (

input clk,

input resetn,

input [31 : 0] incr_i,

output reg [31 : 0] counter_o

);

always @(posedge clk) begin

if(resetn == 0) begin
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counter_o <= 0;

end else begin

counter_o <= counter_o + incr_i;

end

end

endmodule

7.2 streamcontroller.vhd

module stream_ctrl #(

parameter DATA_WIDTH = 16

)(

input clk,

input resetn,

input [31 : 0] samples,

input trig,

input [DATA_WIDTH - 1 : 0] stream_i_tdata,

input stream_i_tvalid,

output stream_i_tready,

output [DATA_WIDTH - 1 : 0] stream_o_tdata,

output stream_o_tvalid,

output stream_o_tlast,

input stream_o_tready

);

localparam [0:0] IDLE=0, RUNNING=1;

reg state;

reg [31 : 0] counter;

reg trig_old;

always @(posedge clk) begin

if (resetn == 0) begin

state <= IDLE;

counter <= 0;

trig_old <= 0;

end else begin

case(state)

IDLE: begin

counter <= 0;

if((trig == 1) && (trig_old == 0)) begin

state <= RUNNING;

end

end

RUNNING: begin

if((stream_i_tvalid == 1) && (stream_o_tready == 1)) begin

counter <= counter + 1;

if(counter == (samples - 1)) begin

state <= IDLE;

end

end

end

endcase
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trig_old <= trig;

end

end

assign stream_o_tdata = stream_i_tdata;

assign stream_o_tvalid = (state == RUNNING) ? stream_i_tvalid : 0;

assign stream_i_tready = (state == RUNNING) ? stream_o_tready : 0;

assign stream_o_tlast = ((state == RUNNING) && (counter == (samples - 1))) ? 1 : 0;

endmodule

7.3 streamcontroller2.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity stream_ctrl is

Generic( DATA_WIDTH : integer := 16);

Port ( clk : in STD_LOGIC;

resetn : in STD_LOGIC;

samples : in STD_LOGIC_VECTOR(31 downto 0);

trig : in STD_LOGIC;

stream_i_tdata : in STD_LOGIC_VECTOR(DATA_WIDTH - 1 downto 0);

stream_i_tvalid : in STD_LOGIC;

stream_i_tready : out STD_LOGIC;

stream_o_tdata: out STD_LOGIC_VECTOR(DATA_WIDTH - 1 downto 0);

stream_o_tvalid : out STD_LOGIC;

stream_o_tlast : out STD_LOGIC;

stream_o_tready : in STD_LOGIC

);

end stream_ctrl;

architecture Behavioral of stream_ctrl is

type STATE_TYPE is (IDLE, RUNNING);

signal state : STATE_TYPE := IDLE;

signal counter : UNSIGNED(31 downto 0) := (others => ’0’);

signal trig_old : STD_LOGIC := ’0’;

begin

process(clk)

begin

if rising_edge(clk) then

if resetn=’0’ then

state <= IDLE;

counter <= (others => ’0’);

trig_old <= ’0’;

else

case state is

when IDLE =>

counter <= (others => ’0’);

if trig = ’1’ and trig_old = ’0’ then
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state <= RUNNING;

end if;

when RUNNING =>

if stream_i_tvalid = ’1’ and stream_o_tready = ’1’ then

counter <= counter + 1;

if counter = (unsigned(samples) - 1) then

state <= IDLE;

end if;

end if;

end case;

trig_old <= trig;

end if;

end if;

end process;

stream_o_tdata <= stream_i_tdata;

stream_o_tvalid <= stream_i_tvalid when state = RUNNING else

’0’;

stream_i_tready <= stream_o_tready when state = RUNNING else

’0’;

stream_o_tlast <= ’1’ when (state = RUNNING) and (counter = (unsigned(samples) - 1)) else

’0’;

end Behavioral;

7.4 Adder.vhd

use library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity stream_adder is

Generic (DATA_WIDTH : integer := 16);

Port ( clk : in STD_LOGIC;

resetn : in STD_LOGIC;

data_0_i_tdata : in STD_LOGIC_VECTOR (DATA_WIDTH - 1 downto 0);

data_0_i_tvalid : in STD_LOGIC;

data_0_i_tlast : in STD_LOGIC;

data_0_i_tready : out STD_LOGIC;

data_1_i_tdata : in STD_LOGIC_VECTOR (DATA_WIDTH - 1 downto 0);

data_1_i_tvalid : in STD_LOGIC;

data_1_i_tlast : in STD_LOGIC;

data_1_i_tready : out STD_LOGIC;

data_o_tdata : out STD_LOGIC_VECTOR (DATA_WIDTH - 1 downto 0);

data_o_tvalid : out STD_LOGIC;

data_o_tlast : out STD_LOGIC;

data_o_tready : in STD_LOGIC);
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end stream_adder;

architecture Behavioral of stream_adder is

signal sum_reg : signed(DATA_WIDTH - 1 downto 0) := (others => ’0’);

signal valid_reg : std_logic := ’0’;

signal tlast_reg : std_logic := ’0’;

begin

process(clk)

begin

if rising_edge(clk) then

if resetn = ’0’ then

sum_reg <= (others => ’0’);

valid_reg <= ’0’;

tlast_reg <= ’0’;

else

if data_0_i_tvalid=’1’ and data_1_i_tvalid=’1’ and data_o_tready=’1’ then

sum_reg <= signed(data_0_i_tdata) + signed(data_1_i_tdata);

valid_reg <= data_0_i_tvalid and data_1_i_tvalid;

tlast_reg <= data_0_i_tlast and data_1_i_tlast;

else

valid_reg <= ’0’;

tlast_reg <= ’0’;

-- sum_reg <= signed(data_0_i_tdata) + signed(data_1_i_tdata);

-- valid_reg <= data_0_i_tvalid and data_1_i_tvalid;

end if;

end if;

end if;

end process;

data_o_tvalid <= valid_reg;

data_o_tdata <= std_logic_vector(sum_reg);

data_o_tlast <= tlast_reg;

data_1_i_tready <= data_o_tready;

data_0_i_tready <= data_o_tready;

end Behavioral;
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