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Three experiments, SBND and ICARUS (currently taking data at FNAL) and MicroBooNE 
(data taking completed in 2019) on the Booster Neutrino Beam at baselines  
of 110, 470 and 600 meters


- ICARUS (SBN-FD), acting as the Far Detector 
The ICARUS experiment is also interested by NuMI beam (6°off-axis)


- SBND (SBN-ND), acting as the Near Detector


The third experiment on the BNB baseline is the MicroBooNE experiment, in the  
middle

Scientific goals 
• Sensitive search ( ) for 1eV sterile  in 3 

years of data taking

• Study the interaction (~3 GeV)-LAr for future 

developments in DUNE

• Search for Beyond Standard Model (BSM) 

physics

5σ ν

ν



3

BNBNuMI

• The detector collect neutrino events both from 
the Booster Neutrino Beam (BNB) and from the 
Neutrino Main Injectior (NuMI)

• A Liquid Argon Time Projection Chamber 
(LArTPC) hight granularity self-triggering 
detector, with 3D imaging and calorimetric 
capabilities, ideal for  physics


• Two cryostats, each with 2 TPCs with a 
common cathode


• Three wire planes (Induction 1, Induction 2, 
collection, with wire orientation at 0˚, +60˚, -60˚ 
respectively) located at the anode


• The trigger system is based on 360 PMTs and 
the triggering is done in the 1.6µs/9µs spill 
window (for BNB/NuMI)

ν

The ICARUS T600 detector

ICARUS at the Fermilab Short-Baseline Neutrino Program - Initial Operation Eur. Phys. J. C 83:467 (2023)

https://doi.org/10.1140/epjc/s10052-023-11610-y


Event reconstruction in LArTPCs: 
ICARUS event reconstruction chain
ICARUS analysis is performed trough a chain 
of subsequent algorithms, performing all the 
steps from clustering of hits (portions of 
waveforms with a signal) in 3D to 
reconstructing the event hierarchy. 


From the Hits of the single wires, the 2D 
reconstruction of the event for each wire 
plane is performed, and then the 3D Clusters 
are made. These then are used as inputs for 
two different reconstruction algorithms.


I will now focus on a specific step (track/
shower separation) of the Pandora-based 
reconstruction chain. PandoraPFA is a pattern 
recognition algorithm.

Gauss Hits

3D clusters

SPINE reco 
SBN-doc-37924-v1}

νeCC μcosmic

Analysis
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Stage 0

Stage 1
Pandora

PandoraCosmic

PandoraNu {

https://github.com/PandoraPFA
https://sbn-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=37924


5

Dataset Signal

Background

T0, α0 T1, α1

Tk, αk

Decision Tree (DT)

…

 BDT⊕
The Tree  starts from the 
misclassified events of the Tree 

Tk+1
Tk

Boosted Decision Tree (BDT) 
Combination of multiple DTs to 
improve classification accuracy

xi < ci,0Node

Branch

Leaf

xj > cj,1

False
True

One BDT algorithm was already available in 
icaruscode (the main ICARUS software framework)

Track/shower discrimination in the Pandora-based TPC 
event reconstruction: A Boosted Decision Tree (BDT) 

Each node in the algorithm uses some physical  
properties of the reconstructed object to classify it either as 

a shower or as a track

The current algorithm uses 13 variables, divided into tree classes; 4 are from the linear fit 
performed on the object, four describe the geometrical shape of the object, and 5 

describe the energy deposition of the hits on the TPC wires



Preliminary tests 
Comparing a Booster Neutrino Beam Monte 
Carlo sample and a uniform energy sample 
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Gauss Hits

3D clusters

ML recoPandora reco }

νeCC μcosmic

Analysis

Track/shower discrimination BDT: testing a new 
dataset 
• The precedent training had a classification efficiency of 

~80 %.


• Good performance with track like particles ( )


• A slight decrease in performance for shower like 
particles ( )


• The goal of my internship was to re-train the algorithm on 
a new Monte Carlo dataset


• Different particle composition


• More uniform energy distribution (no dependence on 
the signal model)

p, π±, μ−

e−, γ, π0
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• The best discrimination is obtained by linear fit difference, 
linear fit RMS and linear fit gap length


• Linear fit length is not a useful variable


‣ The algorithm uses it less often to perform the node cut
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Boosted Decision Tree variables:  
linear fit variables

For each BDT variable the filled area show the summed distributions for each class (  and ) 
and lines show the different particles

tracks ↔ p, π±, μ showers ↔ e−, π0, γ



• Track-like and shower-like distributions are often largely overlapped


• PCA2/3 ratios show a high importance in the feature importance 
plot after the model training


• In the 2D plot, the PCA2 and PCA3 showed a great power wen 
combined, since their distribution had a different shape
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For each BDT variable the filled area show the summed distributions for each class (  and ) 
and lines show the different particles

tracks ↔ p, π±, μ showers ↔ e−, π0, γ

Boosted Decision Tree variables:  
geometrical variables



• Charge end fraction and charge fraction spread 
show great discrimination power


‣ When considered together they act as one of 
the best variable


• The other three (conicalness, concentration, 
halo total ratio) show a quasi-total overlap 
between the shower-like distribution and the 
track-like distribution

10
Good discrimination

Bad 
discrimination

Boosted Decision Tree variables:  
hit charge variables



Training the algorithm

11

Since uniform energy dataset shows a better separation between track-like 
and shower-like particles, we performed the training on this dataset



Chasing the best 
configuration
• Other than the parameters on which to make the cut for the nodes 

(physics driven parameters), the model need also some hyper-parameters


‣ Parameters that boost the trining performance


‣ Can be seen as parameters limits in the fit process


? How can we chose such parameters


‣ We create a list of possible values for each parameter and perform the 
training on each possible combination of those values


‣ This is the idea behind the Cross Validation process


• We first perform Cross validation to find the best hyper parameters for the 
single Decision Tree, and later for the Boosted Decision Tree


! Each training is also performed using the k-fold method 

‣ The dataset is subdivided into  sub datasets and the training is done 
-times, each time with  subsets, leaving one for validation


‣ This efficiently exploits the dataset to improve the classification

k
k k − 1
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• Results of both k-fold Cross Validation processes (single DT and BDT)  
were ranked

‣ Accuracy was chosen to be the ranking score metric


• Of the whole grid of parameters, two were essential

1. (Maximum) Depth of the single Decision Tree


- result of the Cross Validation on the single Decision Tree


‣ Higher depth  more computationally expensive algorithm


‣ Lower depth  less powerful classification

2. Number of Decision Trees in the Boosting process 


- result of the CV on the Boosting process


‣ More estimators (single Decision Trees)  more powerful classification, yet more computationally 
expensive


‣ Less estimators  Less powerful Boosting (extreme case of 1 single Decision Tree)

⟹
⟹

⟹

⟹
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DT Cross 
Validation

BDT Cross 
Validation

<latexit sha1_base64="mDLENxUYoq6yCxShR6vblA3/Y4A="></latexit>

Parameter Value(s)

param_max_depth 3 6
param_n_estimators 1000 1000
param_learning_rate 1.25 0.1
mean_test_score 0.8 0.8
std_test_score 0.0023 0.0023

⊕

Chasing the best 
configuration



Training the best model
• We optimized the depth of the single Decision Tree in a 

range between 3 and 6


‣ After the second CV the depth was chosen to be 3


• The second Cross Validation showed the the best 
performances were obtained with 1000 Decision Trees per 
BDT 


!! The tests show that the training performs better if the 
number of track-like particles is the same as the 
number of shower-like particles 

• Using the optimal set of DT and BDT parameters a final 
training was performed
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DT Cross 
Validation

BDT Cross 
Validation

<latexit sha1_base64="mDLENxUYoq6yCxShR6vblA3/Y4A="></latexit>

Parameter Value(s)

param_max_depth 3 6
param_n_estimators 1000 1000
param_learning_rate 1.25 0.1
mean_test_score 0.8 0.8
std_test_score 0.0023 0.0023

⊕

XML



Training the best model
After the training on the 80% of the uniform energy data, the last 20% of the sample was used as test
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Area(s) Under the Curve are 
actually similar for training and 
testing, showing  
no overfitting/overtraining

The sample shows great 
efficiency and reasonable 
purity for tracks and showers

Efficiency is the true positive 
count over the total events

Purity is the false positive 
count over the total events



Testing the algorithm 
on a physics driven dataset
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Testing on physics driven data
• The newly trained model is useful only if its outperforming the precedent in classifying physics driven data, that is events whose energy 

distribution and other features reflect the expected beam (BNB) events 


• The model is tested against a Booster Neutrino Beam simulated dataset of -only eventsν
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Area(s) Under the Curve are 
actually similar for training 
(MPVMPR sample) and testing 
(BNB sample), showing  
no overfitting/overtraining

The test sample show great 
efficiency and reasonable 
purity for tracks

The same is partially true for 
shower: good efficiency, but 
lack of purity

17



• The new BDT training show good 
classification performance (at least in the 
preliminary stages)


• We can test the new BDT training by 
including it in the Pandora 
reconstruction chain and reprocessing 
the same data sample


!! This helps us validating the new BDT 
training, letting us perform the same study 
done to compare the two original MC 
samples
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Gauss Hits

3D clusters

ML reco}

νeCC μcosmic

Analysis

Stage 0
Pandora

PandoraCosmic

PandoraNu {

XML

<latexit sha1_base64="mDLENxUYoq6yCxShR6vblA3/Y4A="></latexit>

Parameter Value(s)

param_max_depth 3 6
param_n_estimators 1000 1000
param_learning_rate 1.25 0.1
mean_test_score 0.8 0.8
std_test_score 0.0023 0.0023

Testing on physics driven data



<latexit sha1_base64="zoWnSGeaGjk684C2w7I1GuC7i5Q="></latexit>

Track-like Shower-like

Training µ ⇡± p e� ⇡0 �

E�cency
Old 99.1% 98.31% 97.81% 98.5% 97.12% 95.96% 95.94% 96.17%

New 99.67% 99.05% 98.02% 98.93% 95.93% 91.28% 93.6% 92.87%

Purity
Old 99.88% 55.69%

New 99.74% 57.52%

Testing on physics driven data
• The parameter to focus on is the track 

score, that is the outcome of the 
algorithm in terms of event 
classification  

• Using this data we are able to compute 
the efficiency and the purity for each 
class of events and each type of 
particle
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The new training shows


‣ slight improvement in the 
classification efficiency of 
track-like particles


‣ slight decrease in 
efficiency in shower-like 
particles

The new training shows


‣ slight improvement in the 
classification purity of 
track-like particles and of 
shower-like particles



Conclusions 
And possible outlooks

20



Conclusions and next steps
• The results of the new training show a small improvement in track-like particle 

classification, and a slight decrease in efficiency in shower-like particles


• This work (requested by the ICARUS collaboration) is finalized, and I was able to follow all 
the stages from the comparison of the two datasets to the training and the validation of this 
training. 


‣ The work was actively reported in bi-weekly meeting of the ICARUS TPC Reconstruction 
working group, and the subsequent updates can be found here SBN-doc-37652-v1, 
SBN-doc-37571-v2, SBN-doc-37825-v1 and SBN-doc-37990-v1


• Among possible improvements of this study there are


‣ The choice of a different metric for ranking the Cross Validation results


‣ A new training with a selection of the 13 variables 


‣ A new training with greater statistics

21

https://sbn-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=37652
https://sbn-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=37571
https://sbn-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=37825
https://sbn-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=37990


New training of the track/shower BTD algorithm in 
Pandora
Mattia Sotgia, Alice Campani, Lea Di Noto (University of Genoa and INFN), Angela Fava (FNAL)

End term internship presentation 
(Sept. 26th, 2024) 


*msotgia@ge.infn.it, **acampani@ge.infn.it

22

Thank you for the attention!
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Backup Slides

23



Event reconstruction in LArTPCs: 
ICARUS event reconstruction chain

Event

PandoraCosmic

ICARUS implements the Pandora-based reconstruction 
algorithm


• Based on clusters, slices (reconstructed interactions, 
i.e. groups of particles linked with the same 
interaction) and pattern recognition


There are two main stages of the reconstruction


• PandoraCosmic (stage 0) where the cosmic-like hits 
are clustered from the 2D hits and are separated from 
the Event


• PandoraNu (stage 1) where  the reconstruction of the 
 candidates happenν

(μcosmic, ...)

2D Hits

2D Hits (w/out cosmic-hits)

PandoraNu

Stage 1

Slice 1 Slice 2 Slice k…

Boosted Decision Trees (BDTs) are 
used 1. in candidate /cosmic 
selection, 2. in finding the  true 
interaction vertex and 3. in the 

track/shower discrimination 

ν
Reco 
PFP 1

Reco 
PFP 2

Reco 
PFP j…

Interactions

Candidates  or cosmicν

( )p, μ±, π±, …( )e, γ, … Shower 
Fit

Track 
Fit

Reco PFP
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Definition of hit purity and completeness
Compare MC particles and reconstructed PFPs (Particle Flow Particles, Pandora Objects)


Definitions


Matched hits .  
For the example on the side  and 


Purity . 

For the example on the side  and 


Completeness . 

For the example on the side  and 

≡ hitsMC particle ∩ hitsreco pfp
Matched hitsj → 6 Matched hitsk → 2

≡
hitsMC particle ∩ hitsreco pfp

hitsreco pfp

Purityj →
6
9

≃ 67 % Purityk →
2
9

≃ 22 %

≡
hitsMC particle ∩ hitsreco pfp

hitsMC particle

Completenessj →
6
9

≃ 67 %

Completenessk →
2
2

≃ 100 %

Reconstructed track
Hits with match in particle j
Hits with match in particle k
MC hits in particle j
MC hits in particle k

Reconstructed track
Hits with match in particle j
Hits with match in particle k
MC hits in particle j
MC hits in particle k

Particle j

Particle k

PFP j

PFP k
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Looking forward: 
Next steps
‣ The ML MPVMPR sample has shown greater discrimination power in some BDT variables


‣ The ML MPVMPR sample has also a better balance between track-like and shower-like particles contribution


‣ The track/shower ratio is lower than the BNB MC sample 

  

instead of 


‣ The MPVMPR sample analyzed consist of 325535 events, which is overall lower in respect to the event 
count of the BNB MC


‣ In the view of the training a new MC sample with larger statistic has been produced. The sample contains 
roughly 200 000 tracks and 150 000 showers per cryostat

ratioMPVMPR =
#track-like

#shower-like MPVMPR
≃

9052
6978

≃ 1.3

ratioBNB =
#track-like

#shower-like BNB
≃

64972
704

≃ 92.3
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BDT variables: 
charge variables and cone charge variables
The current version of the BDT track/shower algorithm implements 13 variables (hyper parameters) to 
perform the cuts of the decision tree

All the BDT charge variables are computed on the Hits of the induction 1 wire plane. The other make 
use of the full 3D information from the reconstructed PFFs. 

The first two are the ‘charge-based variables’.


1. Charge end fraction (BDT.chendfrac), defined as the ratio of the deposited charge in the last 
10% of the PFP hits, over the total deposited charge. Tracks are expected to have a more 
uniform charge distribution than showers. For this variable the expected values are in the 
range [0, 1]. Smaller values mean a less uniform charge distribution trough the length of the 
pfp.


2. Charge fraction spread (BDT.chfracspread), defined as the ratio of the variance of the 
deposited charge of the hits to the deposited charge mean value. Showers are expected to 
have a more spread variety of charge related to the hits. It is a ratio but it is not normalized (i.e. 
the range is not in [0, 1]). The binning is chosen to be in [0, 2.5]. Tracks are expected in < 1, 
whereas showers are expected in > 1.
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BDT variables: 
charge variables and cone charge variables
The last update of the BDT algorithm introduced three new variables, called ‘cone charge variables’

Defining the chargeCore (the hits inside the 20% of the direction of the primary eigenvector) and 
chargeHalo (hits beyond the 20% threshold) 


3. Concentration (BDT.concentration), defined as   

Values are expected in the range [0, 100]


4. Halo total ratio (BDT.halototratio), defined as , where chargeCon 

is the sum of the Hits inside the cone.  
It being a ratio, the values are expected in the range [0, 1].


5. Conicalness (BDT.conicalness), defined as  

Its values are expected in the range [0, 600].

chargeCon
chargeCore + chargeHalo

chargeCore
chargeCore + chargeHalo

chargeConEnd
chargeConStart / totalChargeEnd

totalChargeStart

28



BDT variables: 
linear and geometrical variables
There are also the linear variables


6. Linear fit length (BDT.linfitlen), defined as the length of the reco particle. The long 
tracks ( ) can be some ~1 m, protons are usually shorter and showers are 
smaller. 


7. Linear fit difference (BDT.linfitdiff), defined as the difference in linearity variation, 
between the end and the start point. This is expected to be quite small, in the range 
[0, 0.15] [arb. U.] both for showers and tracks. 


8. Linear fit gap length (BDT.linfitgaplen), defined as the gap between the hits on the 
linear fit. Tracks are expected to have smaller gap length. The common gap length 
is in the centimeters, so the range is [0, 0.5] cm. 

9. Linear fit RMS (BDT.linfitrms), defined as the RMS of the fit. Tracks are expected 
to have smaller RMS. The binning is in [0, 5], tracks are expected in [0, ~1], and 
showers are expected in [~1, ~5]. 

μ, π±
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BDT variables: 
linear and geometrical variables
And also the geometrical parameters


10. Distance from vertex (to BDT.vtxdist), defined as the distance from the reconstructed vertex and its 
closest hit. This is usually very short for tracks and normally the distance of an electromagnetic shower 
from the reconstructed interaction vertex is greater. The range is chosen [0, 200] cm to account for 
events which were otherwise not included. 


12. PCA2 ratio (BDT.pca2ratio), defined as the ratio of the eigenvalue  over the eigenvalue  obtained 
from the Principal Component Analysis (PCA) algorithm, describing the orientation of the hits in space.


13. PCA3 ratio (BDT.pca3ratio), defines as the ration of the third eigenvalue over the first. It is expected 
to be a good variable, being shower more tridimensional than tracks, since this value highlight the 3D 
aspect of the cluster, along with the PCA2 ratio. The chosen range is to get all the events plotted.


14. Opening angle difference (BDT.openanglediff), defined as , where  is the 

angle between the two eigenvectors.  
The chosen range is in [0, ~35] deg, but most events are to be expected in the [0, 20] deg range. 

v2 v1

tan−1 ( PCA2 sin θ) θ
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The datasets: 
MC fractional population of shower- and track-like particles
The simulations were made for the BNB dataset and for the MPVMPR 
dataset with the particle composition shown on the top right


Two datasets:


• BNB MC created for the study on Central Value (CV) systematics for 
Neutrino 2024 
icaruspro_production_v09_89_01_01_2024A_ICARUS_MC_CV_Sys_2024
A_MC_CV_Sys_flatcaf 


• MPVMPR MC samples, produced by the ICARUS ML WG 
acampani_training_caf_default_v09_89_01_01_mpvmpr


BNB sample is -only, whereas ML MPVMPR (Multi Particle Vertex, Multi 
Particle Rain) is .


A cut (wellRecoCut) is applied to only select well reconstructed particles, 
which have hit completeness and purity above 80% (more of their definition 
is in backup). This avoids biasing the result of the comparison with other 
mis-reconstruction effects, such as clustering issues, track-splitting, …

ν
ν + cosmic

wellRecoCut
BNB (total 65676) MPVMPR (total 16030)
Fraction (events) Fraction (events)

protons 0,391 (25704) 0,377 (6050)
charged_pi 0,073 (4807) 0,153 (2450)
muons 0,525 (34461) 0,034 (552)
electrons 0,005 (313) 0,119 (1911)
photons 0,006 (391) 0,316 (5067)

noSpillCut
BNB (total 213512) MPVMPR (total 66331)
Fraction (events) Fraction (events)

protons 0,527 (112594) 0,429 (28455)
charged_pi 0,121 (25925) 0,223 (14822)
muons 0,237 (50707) 0,018 (1221)
electrons 0,003 (610) 0,092 (6074)
photons 0,111 (23676) 0,238 (15759)
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📚 Neutrino 2024

Shower-like
Track-like

📚 ML sample update SBN-doc-35469-v1

📚 SBN-doc-34318-v2

https://agenda.infn.it/event/37867/contributions/228427/
https://sbn-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=35469
https://sbn-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=34318


Generation of the ML MPVMPR data sample 
ML MPVMPR Working Group
The MC sample data is generated with the Multi Particle Vertex Multi Particle Rain module in sbncode/EventGenerator/Multipart/
gen_mpvmpr.fcl

The data is in the samweb definition icaruspro_production_2024A_MPVMPR_MC_v09_89_01_01_stage1

It is generated in three steps

1. One Multi-Particle Vertex is generated, random number (with a flat distribution) of particles sampled from a uniform energy distribution


- The energy range is taken from the expected energies in the BNB


- The beam spill is set similar, but slightly longer than NuMI, so MPV are generated in the [0, 10] µs range (NuMI is 9.5 µs, whereas 
BNB is 1.6 µs)


2. A random number (flat distribution in [3, 5]) of single particles sampled from different energy distribution is generated (rain2), covering 
the kind of cosmic we could see. 


- Generated in time (during the beam spill) 


- Generated in a larger volume than the TPC fiducial (+20 cm each direction)

3. A random number (flat distribution in [2, 4]) of single particles sampled from different energy distribution is generated (rain), covering the 

kind of cosmic we could see. 


- Generated out of time (not during the beam spill) 


- Generated in a smaller volume than the TPC fiducial (-20 cm each direction)

Further details in ML sample SBN-doc-35469-v1
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https://github.com/SBNSoftware/sbncode/blob/develop/sbncode/EventGenerator/MultiPart/gen_mpvmpr.fcl
https://github.com/SBNSoftware/sbncode/blob/develop/sbncode/EventGenerator/MultiPart/gen_mpvmpr.fcl
https://sbn-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=35469

