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Abstract

The Muon g-2 experiment at FermiLab represents a significant scientific endeavor aimed at
measuring the anomalous magnetic moment of the muon, aµ, with a precision of 140 parts per
billion (ppb). During my internship at FermiLab, I focused on the simulation and analysis of Lost
Muons, a critical aspect to ensure the accuracy of the experimental results. I conducted a detailed
study of the beam dynamics using the existing simulation, I generated a new simulation sample
enrich of events with lost muons, I analyzed it and compared the results I obtained with those
from the Run-2 dataset acquired by the experiment. In this report I will briefly describe my work,
discuss the results and suggest future improvements.

1 Introduction: The Muon
Anomalous Magnetic Mo-
ment

The magnetic moment of an elementary particle
is equal to

µ⃗ = g
q

2m
S⃗ (1)

where q is the particle charge, m is its mass,
and g is the so-called giromagnetic factor. The
Dirac theory, the basis of the Standard Model
(SM), predicts a value of g = 2 for any elemen-
tary particle of spin 1

2 , like the muon. Deviations
from this value arise from radiative corrections
( i.e, contributions from Quantum ElectroDy-
namics, ElectroWeak and QuantumChromoDy-
namics theory). This additional part, called the
anomalous magnetic moment, is defined as:

aµ =
g − 2

2
(2)

Since the radiative corrections to aµ are contri-
butions from all possible particles, even hypo-
thetical undiscovered particles, coupling to the
muon via virtual loops, this makes every dis-
crepancy between the theoretical value and the
experimental measurement a good test for the
SM [1]. A method to measure aµ very precisely
is based on the measurement of anomalous pre-
cession frequency (ωa) of the muons in a constant
magnetic field which, if there are no other elec-
tromagnetic fields, is defined as:

ω⃗a = ω⃗s − ω⃗c = aµ
eB⃗

m
(3)

In details, for a relativistic particle the frequency
at which the particle’s momentum changes direc-
tion is called cyclotron frequency:

ω⃗c =
qB⃗

mγ
(4)

where γ is the Lorentz factor. In addition, a
particle with spin in the magnetic field B⃗ expe-
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riences a torque which causes a precession mo-
tion of its spin around the direction of B⃗. The
frequency of this precession is called Larmor fre-
quency and can be expressed as:

ω⃗s =
qB⃗

mγ
(1 + γaµ) (5)

Hence, ωa represents the frequency of the par-
ticle’s spin precession relative to its momentum
direction, as depicted in the Fig. 1. If g were
equal to 2 the spin would always be parallel to
the momentum direction and ω⃗a = 0, but since
g > 0 by measuring ωa and B⃗ we can measure
aµ [2].

Figure 1: Schematic of the experimental tech-
nique used to precisely measure ωa. [Picture
taken from a colleague’s talk].

This experimental technique is used by the
Muon g-2 FNAL experiment which on August
10th, 2023 presented a new experimental mea-

surement of ωa from the analysis of the Run-2/3
datasets:

aFNAL
µ = 0.00116592057(24)× 10−11(210 ppb)

(6)
With this new measurement, the world exper-
imental average (i.e, the combination with the
previous experimental measurements from BNL
collaboration and FNAL Run-1) is:

aExp
µ = 0.00116592059(22)× 10−11(190 ppb)

(7)
All the experimental results are displayed in
Fig. 2 [3].

Figure 2: Experimental measurements of the
muon anomaly from BNL and FNAL experi-
ments, taken from [3].

2 Experimental Details

In the FNAL Muon g − 2 experiment (E989)
a polarized muon beam is produced from pion
decay. In particular, the pions are produced
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striking bunches of 8-GeV protons into a target.
The positive 3.1-GeV/c pions are then extracted
and transported trough the 279-m-long M2/M3
FODO beam line where about 80% of the pions
decay into muons with an average longitudinal
polarization of approximately 95%. The beam is
then injected into a 505-m circumference Deliv-
ery Ring, where it circulates for four turns and
the remaining protons and pions are swept out
by an in-ring fast-kicker magnet. The purified
and polarized muon beam is then injected into
a 14.2m-diameter superconductive storage ring
characterized by a highly uniform 1.45T mag-
netic field. The muons are left inside it to circu-
late for 700 µ s and each individual injection se-
quence is called a “fill”. Fig. 3 shows a schematic
of the storage ring with all instrumentation.[4]

Figure 3: The storage ring of g-2, taken from
[12].

The muons from the delivery ring enter the
storage ring trough a nearly free field corridor

provided by a superconductive magnet called in-
flector. Thanks to the inflector the particles
avoid the deflections before entering the storage
region but this step causes a large particle loss.
At this point the injected beam is 77mm off cen-
ter but three kicker magnets (namely, K1,K2 and
K3 in 3) provide a short, ideally less than 150 ns,
but strong magnetic pulse that defect the muons
passing trough them by ≈ 10mrad.

While the muons circulate inside the ring, they
decay. Positrons from muon decay are detected
with a calorimeter system, consisting of 24 elec-
tromagnetic calorimeters positioned symmetri-
cally around the inside radius of the storage ring,
adjacent to the storage volume but outside of the
vacuum chambers; see Fig. 4.

Figure 4: Schematics of the storage ring with two
calorimeters and a tracker station, taken from
[12].

Each calorimeter station consists of 54 crys-
tals and silicon photomultiplier (SiPM) for the
Cherenkov light read out. Positron showers are
reconstructed offline and provide energy, time
and impact position [5].

Two tracker stations, based on gas filled straw
tubes are located inside the vacuum chamber at
approximately 180° and 270° with respect to the
inflector (as show in Fig. 4). They are used to
trace back the positrons decay vertex and then
reconstruct the positions of the muons inside the
storage ring [6].
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2.1 Master Formula

To precisely measure the muon anomaly aµ the
following expression is used [7]:

aµ =
ωa

ω′
p(T )

µ
′
p(Tr)

µe(H)

µe(H)

µe

mµ

me

ge
2

(8)

where the FNAL g − 2 collaboration measures
the ratio:

Rµ ≡ ωa

ω′
p(Tr)

(9)

while the other constants, i.e., the proton to elec-
tron magnetic moment ratio, the QED factor
µe(H)
µe

, the muon to electron mass ratio and the
electron g-factor ge, are obtained from calcula-
tion and external measurement [8].

The quantity Rµ in Eq. 9 can be written in
terms of the measured quantity with the follow-
ing expression:

Rµ =
fclockω

m
a (1 + Ce + Cp + Cml + Cpa + Cdd)

fcalibω
′
p(x, y, ϕ)⊗M(x, y, ϕ)(1 +Bk +Bq)

(10)

The denominator includes ω
′
p the magnetic

field B⃗ seen by the muons expressed in terms
of the field frequency maps calibrated using the
fcalib factor and weighted by the muon distribu-
tion M [9].
The numerator includes the master clock blind-
ing factor fclock, the measured precession fre-
quency ωm

a and four beam-corrections Ci.
The measured anomalous precession frequency is
extracting from the positive muons in the stor-
age ring that decay following the reaction:

µ+ → e+νeν⃗µ (11)

which is a weak decay that violates parity.
Hence, positrons are emitted with an energy and

an angular distributions strongly correlated to
the muon spin direction in its rest frame. When
boosted to the lab frame this correlation mod-
ulates the positrons energy spectrum at the ωa

rate and the total number of detected positrons
seen by the calorimeter system (wiggle plot) can
be described by the following 5 parameters func-
tion:

N(t) = N0e
− t

γτµ {1 +A(E) cos[ωat+ ϕ0(E)]}
(12)

where γτµ is the muons lifetime in the laboratory
frame reference, A(E) is the asymmetry, N0 is
the normalization, ϕ0 is the phase and ωa is the
anomalous precession frequency. Therefore, in
principle the value of ωa can be measured by
fitting with equation 12 the wiggle plot, i.e., the
number of positrons detected while the muons
circulate in the ring [10].

2.2 Beam dynamics Corrections

In the ideal case the beam is in a perfect circu-
lar orbit, but in the real experiment the muons
do not orbit in a perfectly horizontal plane in a
homogeneous vertically magnetic field since they
are vertically focused by a system of 4 electro-
static quadruples (ESQs) [11]. Moreover, during
the measurement some muons leave the storage
ring before decaying. To account for this effects,
the following beam dynamics corrections are ap-
plied to ωm

a in order to obtain ωa [12]:

• Ce: to account for the muons that have mo-
mentum p different from p0 = 3.1GeV/c.
It is extracted using the distribution of the
equilibrium radii xe = x − R0, which is re-
lated to the momentum spread, ∆p = p−p0,
since ∆p

p0
≈ xe(1−n)/R0, where n is the field

index determined by the ESQs operational
voltage.
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• Cp: the pitch correction is required to ac-
count for the vertical betatron oscillation
that lead a non zero average value of β⃗ · B⃗.
The correction formula is Cp = n

〈
A2

y

〉
/4R2

0

where the acceptance-corrected vertical am-
plitude Ay is measured by the trackers.

• Cpa: the phase correction is required to ac-
count for the change in time of the phase
term ϕ0 in Eq. 12. It is evaluated by
measuring the beam distribution with the
trackers throughout the storage period and
adding information from calorimeters’ data
and simulations.

• Cdd: the differential decay correction is re-
quired to account for the boosted lifetime of
the high momentum muons with respect to
the lower momentum muons.

• Cml: the muon loss correction to account for
the change during the fill of the phase ϕ0 in
Eq. 12 associated with muons lost since they
have a slightly different spin phase com-
pared to those that are stored.

3 Lost Muons and Simulation

In the experiment Lost Muons (LM) are those
muons that while circulating into the g − 2 ring
are lost before decaying. In general, most of
them are lost when they strike one of the cir-
cular collimator apertures that limit the trans-
verse phase space admittance and its momen-
tum dependence. Collimators (see figure 3 for
their position around the ring) have an aperture
of 45mm radius and are centered in the middle
of the vacuum chamber, the ideal orbits of the
muons. Most of the muons are lost at early times
after the injection, distorting the standard expo-
nential decay. This effect is taken in account into

the final ωa fit including an additional factor Λ(t)
in Eq. 12:

N(t) = N0Λ(t)e
− t

γτµ {1+A(E) cos[ωat+ϕ0(E)]}
(13)

The additional factors is extracted from the loss
function L(t) which is the rate at which the muon
are lost from the ring. The functional form of
Λ(t) can be expressed in term of L(t) as:

Λ(t) = 1−Kml

∫ t

0
L(t′)et

′/γτµdt
′

(14)

where Kml is a scale parameter that is extracted
from the fit analysis of the wiggle plot. The
shape L(t) is data-driven extracted using coin-
cident signals in three consecutive calorimeter
stations [10]. Coincidences are used since the
lost muons signature is given by:

• Timing: muons travelling at speed of light
cover the ≈ 1.8m distance between two con-
secutive calorimeters in ≈ 6.5 ns.

• Energy: lost muons act like MIP particles,
hence according to the Bethe-Bloch equa-
tion we expected that they a deposit they
≈ 170MeV in the energy in each calorime-
ter that they crossed.

• Cluster hit multiplicity: differently from
the positron showers, muons showers have
a very localized energy just in 1 or 2 crys-
tals in a calorimeter.

During my internship I studied the lost muons
using simulation and compared my results with
the lost muons spectra obtain with the data
driven technique just described.

3.1 GM2RingSIM

In the experiment some of the corrections rely
on simulations that describe the beam dynamics
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and are cross-checked by performing comparison
with the data. These data-simulation compar-
isons, first, they help to evaluate the robustness
of the simulation software itself. Second, they
allow to assess the realism and accuracy of the
experimental technique employed.

The collaboration uses several compact simu-
lation packages, in my internship I mainly used
the GM2RingSim simulation which is a program
based GEANT4 implemented within the ART
framework [12, 13]. It includes the model of the
storage ring (as show in Fig. 3) and uses as in-
put a simulation of the beamline that steers the
beam into the ring [14] to simulate the beam
from injection into the storage ring trough stor-
age and the interactions of the muons with mate-
rials and field. All the detectors, i.e., calorimeter
and tracker systems are fully described, as well as
the passive elements of the ring, such as the vac-
uum chambers with their inner structures, the
ESQs, the kicker plates and the collimators.

The GM2RingSim simulation includes also
some simulated detectors without material
(called “ghost detectors”) to track the particle
journey in the ring without influencing it. In par-
ticular, the ghost detectors are the Lost Muon
Ghost Detector (LMGD), a tube around the vac-
uum chamber used to detect the particles that
leave the storage region, and the Ghost Track-
ing Planes (GTPs), which are 48 planes equis-
paced around the ring positioned orthogonal to
the beam direction.

For the generation of the datasets the program
includes several particle guns, each of which can
generate datasets with different characteristics.
In particular, during my internship, I used the
Lost Muon Gun (LGM), which is set for the
generation of high statistic simulation samples
of lost muons.

4 The Lost Muon Gun Settings

The first part of my work involved understanding
how the Lost Muon Gun works. This gun selects
the muons that have more probability to be lost
by calculating the maximum radius (rmax) that
each muon could reach inside the ring. Only the
muons with rmax above a chosen radius are not
suppressed. The maximum radius is computed
using the Twiss parameters as input.
The Twiss parameters are a set of fundamen-

tal parameters that characterize the shape and
dynamics of a particle beam. These parameters
provide crucial information about the beam’s el-
lipse and emittance in the position-momentum
phase space, both of which are important for
understanding the beam behavior and its evo-
lution [14].
For this reason as a first step I studied the ellipse
that graphically represents the transverse cross-
section of the particle beam in a specific time
instant and is defined by two main parameters:
the major axis β and the minor axis α. The β
parameter is related with the maximum extent
of the beam position (x or y) , while the α pa-
rameter to the maximum beam momentum rate
of change (x′ or y′ defined in Eq. 19) [15]. Using
βx and αx the equation of ellipse in x−x

′
phase

space becomes:

γxx
2 + 2αxxx

′ + βxx
′2 = εx (15)

where γx is defined as:

γx =
1 + α2

x

βx
(16)

and the emittance εx represent the area of the
ellipse in the x− x′. Similar definitions are used
for the y − y′ phase space:

γyy
2 + 2αyyy

′ + βyy
′2 = εy. (17)
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with:

γy =
1 + α2

y

βy
(18)

and εy the area of the ellipse in the y− y′ phase
space.

To better understand the beam dynamics and
the Twiss parameter I analyzed a simulated test
sample based on Run-2 settings. Fig. 5 and
Fig. 6 show the distributions of the particle beam
in the phase space for the radial (x−x′) and the
vertical (y − y′) directions.

Figure 5: Beam distribution in the radial phase
space (x − x′) when the muons are starting the
10th turn in the ring.

Figure 6: Distributions in the vertical phase
space (y − y′) when the muons are starting the
10th turn in the ring.

These distributions are taken analyzing the
simulated positions of the muons in the GTP0
(placed just right after the injection at 0◦ in
Fig. 3). In the x-axis is reported the radial or
vertical position of the muons while in the y-axis
is reported x′ and y′, which are defined as:

x′ =
pradial

plogitudinal
y′ =

py
plogitudinal

(19)

The 1-Dimension distributions of each of these
observables, i.e., x, x′, y, y′ for the 10th turn as
recorded on the GTP0 are show in Fig. 7 and
Fig. 8.

Figure 7: Distribution for (top) x (express in
millimeters) and (bottom) for x′ (expressed in
radians).
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Figure 8: Distribution for (top) y (express in
millimeters) and (bottom) for y′ (expressed in
radians).

The distributions observed don’t have a Gaus-
sian shape. Therefore, for the calculation of the
emittance, I employed the definition of the root
mean square emittance defined as:

εxrms =
√〈

x2
〉〈
x′2

〉
−
〈
x · x′

〉
(20)

where
〈
x2

〉
is the variance of the particle’s po-

sition shown on top of Fig. 7,
〈
x′2

〉
is the variance

of the angle that the particle makes with the di-
rection of travel shown on bottom of Fig. 7, while〈
x·x′

〉
represents an angle-position correlation of

particles in the beam. Same definition was used
for y-space by using the variance of the distribu-
tions in top and bottom of Fig. 8. The results

obtained are showing in table 1:

εx [mrad] βx [m] γx[m
−1] αx

31.14 · 10−6 11.79 0.86 0.14

εy [mrad] βy [m] γy [m
−1] αy

7.04 · 10−6 31.16 0.036 0.22

Table 1: Summary of the ellipse parameters in
x− x′ and y − y′ phase-space.

Fig. 9 and Fig. 10 show the ellipses obtained
with these parameters superimposed to the sim-
ulated beam distributions.

Figure 9: Distribution of Fig. 5 with superim-
posed the ellipse obtained with the parameters
described in the top part of Table 1.

Figure 10: Distribution of Fig. 6 with superim-
posed the ellipse obtained with the parameters
described in the top part of Table 1.
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We can see that the ellipse from our analysis
aligned well with the beam shape’s and charac-
teristics.

I crossed check the parameters of Table 1 with
the parameters calculated from considering the
beam as perfectly injected (provided by a col-
league). Comparison is shown in tables 2 and 3.

βx [m] αx γx [m
−1]

11.79 0.14 0.86

βxC [m] αxC γxC [m−1]

7.67 0.017 0.13

Table 2: Comparison of x − x′ parameters ex-
tracted by the full simulation with ideal injection
calculations.

βy [m] αy γy [m
−1]

31.16 0.22 0.036

βyC [m] αyC γyC [m−1]

21.22 -0.038 0.047

Table 3: Comparison of y − y′ parameters ex-
tracted by the full simulation with ideal injection
calculations.

The difference is due to the fact that the pa-
rameters from the full distribution contain the
momentum dispersion of the beam [15], i.e., the
simulation accounts for the spread in momen-
tum at injection. In the Lost Muon Gun we
used the parameters from the calculations (βC ,
αC , γC from tables 2 and 3) as input to eval-
uate rmax since the code already accounts for
the effects of the realistic injection. Beside the
Twiss and dispersion parameters I also set the
rejection radius to 38mm so that all the par-
ticles which are expected to be stored i.e., to
have rmax < 38mm are suppressed. With these

parameters and the Run-2 configuration I sim-
ulated a sample of 8.98 ·108muons. Details are
given in section 5.

5 Dataset Generation with the
Lost Muon Gun

To begin with, the first step involved the genera-
tion of a simulated dataset using the Lost Muon
Gun, which is designed to create datasets with
a high number of lost muons. Notably, for its
operation, it requires the Twiss parameters spe-
cific to the beam as input. These parameters are
crucial for simulating the motion of muons while
are in the ring, ensuring that the simulation ac-
curately reflects the desired characteristics and
to select the muons with the highest probabil-
ity to be lost. As previously explained although,
the parameters we previously extracted matched
the Run-2 simulated beam shape well, we use to
select the high probable to be lost muons the pa-
rameters from calculations with perfect injected
beam since the effect of the injection are ac-
counted by the code in the simulation. Figure 11
shows the total number of events I produced us-
ing the FermiGrid [16] with the Lost Muon Gun
set as described previously.

Figure 11: Total number of events I generated.
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The final sample generated contained almost
10 billion events in which one muon is traced
from injection up to 700µ s. In particular, we set
the Lost Muon Gun with the Run-2 experimental
settings i.e., same time and spatial distributions
of the beam before injection, same ESQs, kicker
and magnetic fields as measured experimentally.
To better monitor the behavior of lost muons
within the ring, especially their interactions with
collimators and coincidences with calorimeters,
we adjusted the muon decay time inside the ring.
This adjustment significantly extended the muon
lifetime within the ring, enabling all muons to
complete many more revolutions. This allowed
for a more statistics and hence a more detailed
observation of their interactions even if due to
this change in the simulation muon lifetime pa-
rameter, we deliberately did not account for po-
tential background signals stemming from triple
coincidences of positrons resulting from muon
decays in the calorimeters. Hence, the modifi-
cation of the muon decay time aimed to isolate
and concentrate on the specific behaviour of the
lost muons, eliminating interference from such
background signals.

6 Lost Muons Analysis

After producing a simulation sample I wrote a
module to perform the lost muons analysis which
has the objective to select and to gain insight
into the behaviour of the muons that are lost.
First, I define the muons as lost using the dis-
tance from the center of the ring to the center of
the storage region: rMagic = 7112mm, and the
radius of the storage region rStorange ≈ 50mm.
Therefore defining:

r =
√
x2 + z2 − rMagic (21)

we can say that a muon is lost if:√
r2 + y2 > rStorage (22)

Then, I tagged assigning CollimatorsHit =
1, 2, 3, ..., the lost muons that hit 1,2,3,... times
one (or more) of the 5 collimators in the ring. If
a muon hits a collimator is highly probably that
it will be lost.
Figures 12, 13, 14, 15 and 16 show the distribu-
tions of the position where the muons hit each
collimator, namely collimators 2, 3, 6, 8 and 9.
In these plots r coordinate is calculated as Eq. 21
i.e., the radial distance from the center of the
vacuum chamber, while the y is the vertical dis-
tance.

Figure 12: Muon hit positions in Collimator 2.

Figure 13: Muon hit positions in Collimator 3.
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Figure 14: Muon hit positions in Collimator 6.

Figure 15: Muon hit positions in Collimator 8.

Figure 16: Muon hit positions in Collimator 9.

The distributions for collimators 2 and 3,
which are located closer to the entrance of the
ring, exhibit a right-left side symmetry. In con-
trast, the distributions of collimators 6, 8 and 9
which are positioned near the end of the ring,
appear more concentrated on the right side. We
are still investigate this effect.

Figures 17, 18, 19, 20 and 21 show the previ-
ous distributions but with muons that survive in
the ring for > 10µs (top) and > 30µs (bottom).
We see that the majority of the muons was lost in
the early times right after the injection. The one
the survive at least 10µs hit mostly the right (to-
wards the outer side ring) side of the collimator,
while the survivors after 30µs hit the collimators
surface more homogeneously.

Figure 17: Muon hit positions in Collimator 2 for
survivors (top) > 10µs and (bottom) > 30µs.
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Figure 18: Muon hit positions in Collimator 3 for
survivors (top) > 10µs and (bottom) > 30µs.

Figure 19: Muon hit positions in Collimator 6 for
survivors (top) > 10µs and (bottom) > 30µs.

Figure 20: Muon hit positions in Collimator 8 for
survivors (top) > 10µs and (bottom) > 30µs.

Figure 21: Muon hit positions in Collimator 9 for
survivors (top) > 10µs and (bottom) > 30µs.
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In contrast, when we analyzing real data,
we employed a model based on triple coinci-
dences with the calorimeters. We then tag with
CaloCoincidence = 2, 3, 4 the muons that exit
the storage region and make a double or triple
or quadrupole coincidence in the calorimeter sys-
tem. Figure 22 shows the muon tagging: on the
y-axis the number of calorimeter coincidences,
while in the x-axis the number of times the muon
hit a collimator for all the muons (top), the
muons that survive > 10µs (middle) or > 30µs
(bottom)inside the ring.

Figure 22: CaloCoincidence vs CollimatorHits
for (top) all muons, (middle) survivors > 10µs
and (bottom) survivors > 30µs.

We see that for the muons that survive at least
10µ s (i.e., Fig. 22 middle and bottom) only the
muons that hit a collimator make a triple or more
coincidence in the calorimeter system.

With these definitions we can study the lost
muons using a different approach, which is tai-
lored to the characteristics of the experimental
setup and the data collected. This is because, in
the analysis of real data, we are unable to tag
muons that have interacted with a collimator.
Therefore, our aim is to compare these two def-
initions of “lost muons” using the simulation as
a bridge. By doing so, we asses how the simu-
lation’s definition of lost muons, which includes
information of the interactions with collimators,
aligns with the definition based on triple coin-
cidences with calorimeters used in the analysis
of real data, by studying the distribution of the
muons when they interact with a collimator and
compare it with those that make double or mul-
tiple coincidences in the calorimeters. Moreover,
we analyzed and compared the temporal spectra
of decaying muons, L(t) (see Sec. 3), both for
those that interact with a collimator and those
that undergo triple coincidences in the calorime-
ters.
Furthermore, we analyzed the time intervals
between double, triple, and quadruple coinci-
dences, and the first and the last collimator hit.
Finally, the same analysis has been perform se-
lecting the muons that are in the ring in the time
intervals 0-700µs, 10-700µs and 30-700µs. The
last time interval coincides with the one used to
perform the fit to extract ωm

a .

6.1 Lost Muon Position

Initially, I studied the position of the muons
within the ring, as show in Figure 23 where the
muon’s position within the ring as a function of
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the turn performed by the muon is illustrated.
Of particular interest are the events involving
muons that, during the simulation, exceed a dis-
placement of 45mm within the ring and circulate
in the ring at least for 30µs (∼ 200 turns). These
muons are called “Edge muons” since they have
the possibility to interact with a collimator and
subsequently exit the vacuum chamber.

Figure 23: Radius of the muons during their
path inside the ring with the definition of Edge
and Survivors.

Figure 24 displays the positions at which
muons leave the storage ring. This information is
extracted using the LMGD described in Sec. 3.1.

Figure 24: Positions where muons exit the stor-
age ring.

It is evident that the majority of events are
lost in the initial region of the ring, particularly
in proximity of the kicker region.

Figures 25, 26 and 27 show the positions, de-
tected with the LMGD, where muons that have
hit a collimator exit the vacuum chambers.

Figure 25: Positions at which muons that hit the
collimators exit the storage ring.

Figure 26: Positions at which muons that hit the
collimators exit the storage ring after 10µs.

Figure 27: Positions at which muons that hit the
collimators exit the storage ring after 30µs.
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We observe that for the muons that survive
inside the ring for at least 10 and 30µs, the ma-
jority of them are lost in the last quadrant of the
ring (after all five collimators). While the ma-
jority of the muons that exit before 10µs leave
the ring in the second quadrant, after the first
two collimators. For the position of the five col-
limators refer to Figure 3.

6.2 Coincidens and Collimators

In the Figures 28, 29 and 30 are shown the num-
ber of triple coincidences made versus the num-
ber of the first calorimeter hit in the triple. Each
figure shows a distribution with a different time-
interval: 0-700µs, 10-700µs and 30-700µs.

Figure 28: Triple coincidences vs number of first
calorimeter hit during 0-700µs.

Figure 29: Triple coincidences vs number of first
calorimeter hit during 10-700µs.

Figure 30: Triple coincidences vs number of first
calorimeter hit during 30-700µs.

It can be seen that of all muons that make a
triple coincidence only the 0.68% makes a coin-
cidence after 10µs.

Figures 31, 32, 33, 34, 35, 36 show the dis-
tributions of the momentum respectively for the
muons that hit a collimator and for the one that
make at least a double coincidence. In these dis-
tributions the momentum is defined as the mo-
mentum of the muon when hits the last GTP
before exiting the storage region substract and
divided by the momentum which muons should
have if they don’t interact with the maerial in
the ring:

∆p =
(plastGTP − pmagic)

pmagic
. (23)

These distributions are compared with the one
coming from the muons that neither make a co-
incidence nor hit a collimator; see Figures 37, 38
and 39. All of them are taken with the usual
different time-intervals: 0-700µs, 10-700µs and
30-700µs.
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Figure 31: ∆p distribution of muons that hit a
collimator.

Figure 32: ∆p distribution of muons that make
at least a double coincidence.

Figure 33: ∆p distribution of muons that hit a
collimator and survived > 10µs.

Figure 34: ∆p distribution of muons that make
a coincidences and survived > 10µs.

Figure 35: ∆p distribution of muons that hit a
collimator and survived > 30µs.

Figure 36: ∆p distribution of muons that make
a coincidences and survived > 30µs.
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Figure 37: ∆p distribution of muons that neither
make a coincidence nor hit a collimator.

Figure 38: ∆p distribution of muons that nei-
ther make a coincidence nor hit a collimator and
survived > 10µs.

Figure 39: ∆p distribution of muons that nei-
ther make a coincidence nor hit a collimator and
survived > 30µs.

Finally, Figures 40, 41 and 42 show the distri-
butions of the momentum defined as in Eq. 23
for muons with the different coincidence multi-
plicity, i.e., doubles, triples, and quadruples. In
each figure on the top, middle, bottom are shown
the distributions for the time-intervals 0-700µs,
10-700µs and 30-700µs, respectively.

Figure 40: ∆p distribution of muons that make
a double coincidence after (top) 0µs, (middle)
10µs and (bottom) 30µs.
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Figure 41: ∆p distribution of muons that make a
triple coincidence after (top) 0µs, (middle) 10µs
and (bottom) 30µs.

A low momentum tail is visible in all distri-
butions. We think it is populated by the muons
that interact with the material in the ring dur-
ing the initial scraping in the inflector and/or
by hitting collimators, kickers and quadrupoles
plates. These possible causes of the momentum
lost are under investigation.

Figure 42: ∆p distribution of muons that make a
quadruple coincidence after (top) 0µs, (middle)
10µs and (bottom) 30µs.

Figures 43 and 44 show the the time distance
between the first and last collimator hits as a
function of the time and the turns that muons
stays in the ring, respectively.

From this distribution we can see that muons can
travel inside the ring for even for ≈ 4000 turns
between the first and the last time they hit a
collimator.
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Figure 43: Time distance between the first and
last collimator hits versus time the muon exits
the storage ring.

Figure 44: Time distance between the first and
last collimator hits versus number of turn the
muon does in the ring.

Figures 44 and 45 shows the difference time
between the triple coincidence and both the first
and last collimator.

Figure 45: Time difference between the first
collimator hit and the triple coincidence in the
calorimeter system.

Figure 46: Time difference between the last col-
limator hit and the triple coincidence in the
calorimeter system.

These distribution show that most of the
muons travel for less than ≈ 100 ns from the
collimator hit (both first and last) before be de-
tected as a triple coincidence in the calorimeter
system. Similar difference in time as been found
considering the lost muons that are detected as a
quadruple coincidences, but seams that the time
interval between collimators first or last hit and
double coincidence in the calorimeter is slighty
shorter (see Figures 47 and 48).
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Figure 47: ∆t between the (top) first and (bot-
tom) last collimator hit and the doubles.

Figure 48: ∆t between the (top) first and (bot-
tom) last collimator hit and the quadruples.

6.3 Comparison with the real data

One of the goals of the lost muons analysis is
to compare the simulated lost muons with the
data-driven.
Figure 49 illustrates the temporal spectra L(t)

(see Sec. 3) of the muons simulated and defined
using the triple coincidences in the calorimeter
system. In comparison, figure 50 shows those
muons defined as lost because they interact with
the collimators.

Figure 49: L(tGTPs) of lost muons detected with
the calorimeter triple coincidences in simulation.

Figure 50: L(tGTPs) for lost muons tagged with
the collimator hits.
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In these two plots the time is defined as the
last time recorded by the GTPs in the simula-
tion (tGTPs). We can see that both spectrum
have very similar behaviour except for the peak
at 700µs in Fig. 50 which represents the muons
that hit a collimator but never leave the stor-
age ring (within the simulation time-frame that
is 700µs, see Sec. 5 for details). As said, the
final goal is to compare these two distributions
with the time spectrum coming from the exper-
imental data taken during Run-2 and shown in
Figure 51.

Figure 51: L(t) from Run-2 lost muon experi-
mental data [Courtesy of ωaEuropa Group].

At the present statistic in simulation is still
not enough for this comparison, Also, in simula-
tion the exponential behaviour is missing since
as previously explained the muon decay was sup-
pressed when the dataset has been generated.
The statistical limitation primarily arises from
the fact that a significant portion of muons are
lost, as expected, during the initial few microsec-
onds of their journey in the ring. In fact only
1-2% of the muons stay inside the ring for more
than 30µs (this is similar to the experimental
acceptance [12]).

Finally, Figure 52 shows the comparison be-
tween simulation and experimental data col-
lected during Run-2 of the number of triple co-
incidences recorded for each calorimeter after
30µs. The simulation seams to reproduce the
peak of coincidences seen on the first 8 calorime-
ters but also this comparison is limited by the
low statistics sample of the simulation.

Figure 52: Comparison of the number of triple
coincidences recorded for each calorimeter af-
ter 30µs between (top) simulation and (bottom)
experimental data taken during Run-2 [Experi-
mental data courtesy of ωaEuropa Group].

Therefore, our future plans include a contin-
ued effort to generate a more substantial dataset,
with the aim of investigating and understanding
the lost muons more comprehensively.
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7 Conclusions

These two months at Fermilab have been an ex-
traordinary learning experience, during which I
delved into the intricacies of the g−2 experiment,
particularly with respect to the beam dynamics
corrections. I gained valuable insights into uti-
lizing simulations for generating datasets with
a high number of Lost Muons and leveraging
simulation tools for the subsequent data anal-
ysis. Furthermore, I acquired the knowledge to
compare simulation results with those obtained
from real data, allowing for an assessment of the
model’s consistency and the adequacy of the sim-
ulation. This opportunity has been instrumen-
tal in expanding my understanding and exper-
tise in experimental particle physics. I hope to
continue with this work, specifically aiming to
gather more data to increase the statistics and
facilitate a more comprehensive comparison be-
tween simulation data and real data acquisition.
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