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1 Introduction

1.1 The Mu2e Experiment

The Mu2e experiment at Fermilab will be 10,000 times more sensitive than previous experiments looking for
muon-to-electron conversion [1]. This precise and complex experimental apparatus will produce 200 million
billion muons per year. The accelerator complex repurposes elements of the infrastructure that produced high
energy proton and anti-protons beams for the Tevatron experiments to produce the high-intensity muon beams
necessary for Mu2e and the Muon (g-2) experiments.

The Fermilab Booster will accelerate protons to the 8 GeV needed to produce the intense muon beam
employed by Mu2e.

The protons will travel from the Booster to the Recycler where they will be stacked, bunched, and extracted
to the Delivery ring. The Delivery ring is located in the repurposed Debuncher. Once in the Delivery ring
the protons will be slow extracted and delivered to the Mu2e apparatus. A system of three superconducting
solenoidal magnets (Production Solenoid, Transport Solenoid and Detector Solenoid) will transport the intense
low-energy muon beam to the experimental area where Mu2e is located.

The 8 GeV protons will arrive in bunches from the Delivery ring and enter the Mu2e Production Solenoid
at a slight angle to its axis and strike a tungsten production target about the size of a pencil. These collisions
will create a cascade of particles, including pions that decay into muons. The magnetic field of the Production
Solenoid will capture some of the muons and spiral them into the Transport Solenoid. Only about 1 in 300
protons that collide with the production target will generate a muon that moves into the Transport Solenoid.
Throughout the experiment’s projected three-year running period, roughly 10 billion muons per second will be
stopped.

Muons in the Transport Solenoid will travel inside an evacuated vessel towards the Mu2e aluminum target.
The Mu2e detector is the particle physics detector embedded inside the Detector Solenoid that provides a
magnetic field in the detector region that allows the momentum of the conversion electrons to be accurately
determined. The Mu2e detectors consist of two main parts: the magnetic spectrometer to measure particles
momentum, and the electromagnetic calorimeter to measure particles energy and time of impact.

Improvements to the accelerator could extend the initial Mu2e sensitivity by a factor of ten or more. This is
comparable to Mu2e initially producing a number of muons equivalent to all the grains of sand on the Earth’s
beaches. This would provide a valuable tool for physics research whether or not Mu2e discovers muon-to-electron
conversion during its first, lower-intensity phase. If Mu2e does observe charged lepton conversion, an upgraded
accelerator would enable Mu2e to study in depth the details of the conversion by providing more data. If Mu2e
does not observe the conversion, the collaboration could continue the search with a wider net and also search for
signs of never-before-seen physics in rare processes that have previously been out of reach of physics machines.

1.2 The Mu2e Experiment Facility

The Mu2e apparatus is extensively documented in the conceptual Design and Technical Report.

Figure 1: Mu2e apparatus: the proton beam enters from the right at the junction between the Production
Solenoid and the Transport Solenoid, and strikes the production target. The cosmic ray veto system, which
surrounds the Detector Solenoid, and the muon stopping monitor are not shown in this scheme (source: Mu2e
experiment data center.
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1.2.1 Production Solenoid

The Mu2e magnet system consists of three large superconducting solenoids. The first one in the chain of magnets
is the Production Solenoid (PS), whose role is to collect and focus pions and muons generated in interactions
of an 8-GeV proton beam with a tilted high-Z target, by supplying a peak axial field between 4.6 T and 5.0 T
and an axial field gradient of about 1 T/m, within a 1.5 m warm bore.

The PS is a challenging magnet because of the relatively high magnetic field and a harsh radiation environ-
ment that requires the state-of-the-art conductor, both in terms of the current-carrying capacity and structural
strength. The PS coil is protected by a massive Heat and Radiation Shield (HRS).

1.2.2 Transport Solenoid

The role of the S-shaped Transport Solenoid (TS) is to filter and transport the muon beam (approximately 1011
muon/s) to the Detector Solenoid. It is composed of 14 superconducting units (solenoids and toroids) and is
divided in five sections:

• a 1 m long straight section

• a 90-degree elbow, with 3 meters radius of curvature

• a second 2 m long straight section

• a second 90-degree elbow, similar to the first, that turns the beam line in a direction parallel to the first
one

• a final 1 m long straigth section

The resulting length of the Transport Solenoid is 13 m. To improve the purity of the muon beam, the
Transport Solenoid has an absorber placed in its central part that stops charged particles (mainly antiprotons).
A state-of-the-art collimator system is placed in the same zone to select only low energy muons with momentum
below 0.08 GeV/c0. Moreover, the S-shape of the solenoid removes neutral particles that travel in a straight
direction.

1.2.3 Detector Solenoid

The Detector Solenoid (DS) is a 11 m long component, with a decreasing magnetic field in the first sector (from
2 T to 1 T). It hosts the muon stopping target, schematically represented in figure ??.

Muons impacting the disks come to rest and replace the electrons lying in the 1s orbit of the aluminium
atoms. The lifetime of the muon in the muonic atom is 864 ns. The non uniformity of magnetic field plays
an important role in reducing the background coming from high energy electrons transported to the Detector
Solenoid. The magnetic field gradient is generated introducing spacers to change the winding density of the
superconducting cable, which is made of aluminum-stabilized NiTi.

Figure 2: The Mu2e stopping target is made of 17 aluminium disks, 0.2 mm thick, spaced 5.0cm apart along the
Detector Solenoid axis. The disks radii decrease from 8.3 cm at the upstream end to 6.53 cm at the downstream
end (source: Mu2e experiment data center).
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1.2.4 The Tracker and the Electromagnetic Calorimeter

The Mu2e detector is located inside the evacuated warm bore of the Detector Solenoid in a nearly uniform 1 Tesla
magnetic field and is designed to efficiently and accurately identify and analyse the helical trajectories of ∼105
MeV electrons in the high-rate time varying environment of Mu2e. The detector consists of a Tracker and an
electromagnetic calorimeter that provide redundant energy/momentum, timing, and trajectory measurements.
A cosmic ray veto, consisting of both active and passive elements, surrounds the Detector Solenoid and nearly
half of the Transport Solenoid and is used to identify possible background events due to cosmic-rays.

The Mu2e Tracker is designed to accurately reconstruct the helical trajectories of electrons in a uniform 1
Tesla magnetic field and measure their momenta.

Given that multiple scattering in the Tracker material dominates the resolution on the measurement of
the helix parameters, the mechanical structure of the detector has been made extremely light. The Tracker is
made of straw drift tubes; and is called T-Tracker because the straws are transverse to the axis of the Detector
Solenoid. The basic detector element is made of a 20 µm sense wire inside a straw tube filled with gas. The
straws are 5 mm diameter tubes, made of 15 µm thick metallic Mylar. The Tracker is made of approximately
2000 straws arranged along 18 stations across the 3 m Tracker length. One Tracker plane consists of two layers
of straws to improve the reconstruction efficiency and help to overcome the classic left-right ambiguity. A 1 mm
gap between straws allows for manufacturing tolerance and expansion due to the internal pressure. A larger
radius ring outside the active detector region supports the straws and the electronics boards.

Each straw has one preamplifier and one time-to-digital converter (TDC) placed on each tip, in order to
measure the signal arrival time on both sides. It uses also analog to digital converters (ADC) to measure the
total integrated charge, providing useful information for particle identification.

The Tracker has been designed to observe only electrons with energy greater than 53 MeV. Electrons below
this threshold travel undetected in the central un-instrumented volume of the Tracker. They are approximately
3% of the total electron flux coming from muon decays. Since momentum resolution is a crucial factor to
suppress critical backgrounds, the Tracker is required to have a momentum resolution better than 180 keV for
100 MeV electrons.

The Mu2e calorimeter provides additional energy, position, and timing information for particles’ trajectories
reconstructed by the Tracker. The two detectors use different physical and technological processes to perform
their measurements, to rely on uncorrelated error sources. This helps to reduce backgrounds and provides a
cross check to verify the quality of signal events.

The calorimeter operates in the same solenoidal magnetic field and vacuum level as the Tracker. It handles
a large flux of particles, mostly a low energy background of protons, neutrons and gamma rays produced by
muon captures in the stopping target. It also manages a large flux of electrons coming from muons decays in
the aluminium stopping target, and other produced particles during the beam injection.

1.2.5 Cosmic Ray Veto

Cosmic ray muons may initiate processes and produce particles that interact with the detectors and produce
unwanted backgrounds. The simulation show that approximately one background event generated by cosmic
ray muons may be erroneously reconstructed as a conversion electron signal per day. This source of background
can be reduced to a negligible level by introducing passive and active shielding.

The Cosmic Ray Veto (CRV) surrounds the entire volume occupied by the Detector Solenoid and the
downstream part of the Transport Solenoid. It consists of four layers of extruded scintillator strips with silicon
photosensors and aluminum absorbers.

The cosmic ray induced background rate will be monitored between beam spills and when the beam will be
turned off. This allows to perform a direct measurement of the background level. The study of the background
rate will be initiated as soon as the Detector Solenoid and the cosmic ray veto are in place.

1.3 Trigger and Data Acquisition System

The Mu2e Trigger and Data Acquisition (TDAQ) subsystem provides necessary components to collect digitised
data from the Tracker, Calorimeter, Cosmic Ray Veto and Beam Monitoring systems (Stopping Target Monitor
and Extinction Monitor), and deliver that data to the online and offline processors for further analysis. It is also
responsible for detector synchronisation, control, monitoring, and operator interfaces. The Mu2e TDAQ is based
on a “streaming” readout. This means that Tracker and Calorimeter detector data is digitised, zero-suppressed
in front-end electronics, and then transmitted off the detector to the TDAQ system. While this approach results
in a higher off-detector data rate, it also provides greater flexibility in data analysis and filtering, as well as a
simplified architecture. The Mu2e TDAQ architecture is further simplified by the integration of all off-detector
components in a “TDAQ Server” which functions as a centralised controller, data collector and data processor.
A single TDAQ Server can be used as a complete standalone data acquisition/processing system or multiple
TDAQ Servers can be connected together to form a highly scalable system.
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1.3.1 Requirements

The TDAQ monitors, selects, and validates physics and calibration data from the Mu2e detector for final
stewardship by the offline computing systems. The TDAQ combines information from about 450 detector
data sources and applies filters to reduce the average data volume by a factor of at least 100 before it can be
transferred to offline storage. The TDAQ also provides a timing and control network for precise synchronisation
and control of the data sources and readout, along with a Detector Control System (DCS) for operational control
and monitoring of all Mu2e subsystems. Figure ?? shows a full view with focus on the interfaces connected to
TDAQ: Tracker and Calorimeter ROCs, Detector Hall, WH Control Room.

TDAQ requirements are based on the following experiment attributes:

• Environment: the TDAQ system will be located in the surface level electronics room and connected to
the detector by optical fiber. There are no radiation or temperature issues. The TDAQ will however be
exposed to a magnetic fringe field from the detector solenoid at a level of about 20-30 gauss.

• Beam Structure: supercycle is the temporal window between two proton beams (1.4 s). Beam is delivered
to the detector during the first 467 ms of each supercycle. During this period there can be up to eight 54
ms spills. Spills are proton pulses delivered to the target in the Production Solenoid. Each spill contains
approximately 32 000 “µBunches”, for a total of 256 000 µBunches in a 1.4 second supercycle. A µBunch
is 1695 ns. Readout Controllers store data from the digitizers during the “live gate”. The live gate width
is programmable but is nominally the last 1000 ns of each µBunch.

• Detectors: the TDAQ system receives data from the following subdetectors:

– Tracker – 20 736 straw tubes: 96 tubes per “panel”, 12 panels per “station” and 18 stations. There
are 216 Readout Controllers (one for each panel) located inside the cryostat. Straw tubes are read
from both ends to determine hit location along the wire. The readout produces two TDC values (16
bits each) and typically six ADC values (10 bits each) per hit. The ADC values are the analog sum
of both ends of the straw.

– Calorimeter – 1610 crystals in 2 disks. There are 192 Readout Controllers located inside the cryostat.
Each crystal is connected to two avalanche photodiodes (APDs). The readout produces approxi-
mately 25 ADC values (12 bits each) per hit.

– Cosmic Ray Veto system – 21 504 Silicon Photomultipliers (SiPMs). There are 336 front-end boards
(64 channels each), and 14 Readout Controllers (24 front-end boards each). The readout generates
approximately 12 bytes for each hit. CRV data is used in the offline reconstruction, so readout is
only necessary for timestamps that have passed the Tracker and Calorimeter filters.

– Extinction and Target Monitors – monitors will be implemented as standalone systems with local
processing. A subset of information will be forwarded to the TDAQ for inclusion in the run conditions
database and optionally in the event stream.

• Data rate: the detector will generate an estimated 150 Kbytes of zero-suppressed data per µBunch, for an
average data rate of about 90 Gbytes/s when beam is present. To reduce TDAQ bandwidth requirements,
this data is buffered in Readout Controller (ROC) memory during the spill period, and transmitted to
the TDAQ over the full supercycle for an average data rate of about 28 Gbytes/s.

• Processing: the TDAQ system provides online processing to perform Tracker and Calorimeter filters.
The goal of these filters is to reduce the data rate by a factor of at least 100, limiting the offline data
storage to less than 7 Petabytes/year. Based on preliminary estimates, the online processing requirement
is approximately 30 TeraFLOPS.

1.3.2 Architecture

Readout Controllers digitise and zero-suppress data at the detector. The data is then transmitted over optical
links to TDAQ Servers in the surface level electronics room. Control information is sent from the TDAQ Servers
to the Readout Controllers over the same bidirectional optical links. Data is exchanged between TDAQ Servers
(via the Event Building Network) to form complete events. The TDAQ Servers filter these events and forward
a small subset of them to offline storage.
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Figure 3: Full view of TDAQ and its interfaces with subsystems

Subproject Interfaces
Tracker, Calorimeter, CRV The TDAQ connects to detector readout controllers via optical

links which carry fast control, slow control and data. The Tim-
ing system supplies an encoded System Clock to each detector
subsystem.

Solenoids, Beamline The TDAQ provides the infrastructure for slow control and mon-
itoring, and readout of the stopping target monitor.

Accelerator The TDAQ receives beam timing and status information from
the accelerator for timing system synchronization. The TDAQ
also provides the infrastructure for slow control and readout of
the extinction monitor.

Civil The civil construction subproject provides the surface level elec-
tronics room, power, and air conditioning for the TDAQ. It also
supplies cable chases for connecting the detector hall electronics
to the electronics room.

1.3.3 Readout Controllers

Readout Controllers (ROCs) are not part of the TDAQ system, but rather are included separately in each
detector subsystem.

Readout Controllers have the main purpose of data collection, buffer management and processing. They
are based on an FPGA architecture. This FPGA provides the high-speed serial transceivers (SERDES) for the
optical links and manages all kind of communications: both data transfer then Detector Control System (DCS)
“slow control” operations. ROC’s firmware is still in development: one of the possible approach is to embed
a microcontroller, which handles and is responsible for initializing the FPGA. Because all communication is
normally routed to or through the FPGA, there must be a failsafe way to reload the FPGA in the event of
firmware corruption. A watchdog timer will restart the microcontroller on loss of System Clock, or if any of
several FPGA and microcontroller check signals are outside nominal timing windows. This will automatically
reload a “golden” version of the FPGA and microcontroller firmware from dedicated SPI memory, providing
a known-good DCS connection. DCS commands can then be used to remotely load new software/firmware
into the application program memory. A DCS “run” command must be sent to the microcontroller to cause
it to switch from golden to application program memory. Readout Controllers in or near the detector will
be exposed to a high neutron flux. SRAM based FPGAs are sensitive to radiation induced single-event upset
(SEU) in the configuration and application memory. Mu2e Readout Controllers in higher radiation areas will use
Microsemi PolarFire series FPGAs which provide on-chip microcontroller and SERDES and a number of features
to mitigate SEU, including flash based configuration and ECC protected memory and registers. Commercial
integrated circuits can typically tolerate total dose of at least 100 Gy without significant degradation. In the
region where the Tracker and Calorimeter ROCs are located, total dose is estimated at 10 Gy/yr.
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Data from the digitizers is zero-suppressed, formatted and written to the ROC Data Buffer during the beam
spill. Data packets are read from the Data Buffer and transmitted on the optical link during the full accelerator
supercycle. The buffer is large enough to hold at least 1 second of ROC output data, and uses ECC memory
for SEU mitigation.

1.3.4 Data Transfer Controller

The Mu2e Data Transfer Controller (DTC) [25] collects data from multiple detector Readout Controllers,
optionally performing event building and data preprocessing. The DTC module provides an interface between
the Mu2e Readout Controller (ROC) modules, and the Trigger and Data Acquisition (TDAQ) servers running
the TDAQ online software framework. For Mu2e, the DTC (figure 3.5) is implemented using a commercial
PCIe (Peripheral Component Interconnect Express) card located in the TDAQ Server. It is based on the
HiTech Global Kintex-7 (HTG-K700) PCI Express expansion card. This card features an eight lane Gen 2
PCI Express interface, a DDR3 SODIMM socket, and a 400 pin FMC connector, all wired to a Xilinx K325T
Kintex-7 FPGA. The FMC connector allows the installation of an FMC card with the optical fiber interface.
This provides for multi-gigabit serial links for up to six ROC Links, a port for data exchange for hardware event
building, and a port for the Command Fan-Out (CFO) interface. Firmware for the DTC’s FPGA is based on
a modified reference design provided by Xilinx.

The central component of the Mu2e TDAQ system is a commercial 3U server, which manages data collection
from the Readout Controllers, Event Building, and Online processin. There are a total of 36 TDAQ servers,
occupying four racks in the electronics room. The servers used for pilot system development are Supermicro
X10DRD-iTP with dual E5-2680v3 processors and four 8GB ECC DDR3 2133 memory modules.

High-speed serial ports are provided by an adapter module which plugs into the FMC (FPGA Mezzanine
Card) connector on the PCIe card. This adapter has eight bidirectional SFP+ (enhanced Small Form-factor
Pluggable) ports, and can be used with optical or copper cabling. Six of the ports are used to connect to
Readout Controller rings optical links. One port can be used to connect to the Event Building Network to
exchange data between DTCs. The last port is used to communicate with the Run Control Host computer.

The DTC receives Heartbeat packets from the Run Control Host. These packets are forwarded on each
attached ROC ring link. Data packets from the Readout Controllers are returned on the same links. The DTC
multiplexes data from six links into one timeslice which is then transferred to the Server over PCIe, or to other
DTCs via the Event Building Network.

1.3.5 Run Control Host

The Run Control Host receives beam status and timing information from the Accelerator Controls network, and
operator commands from the remote control room. The Command Fanout (CFO) module in the Run Control
Host is responsible for generating and synchronising Heartbeat packets. It sends a Heartbeat control packet
for each event window. The CFO contains a set of standard Heartbeat packet templates (normal readout,
calibration, no operation, etc.), and a default list mapping these packets to each of the ∼800,000 potential event
window periods in a 1.4 second supercycle. The CFO also maintains the System Timestamp which it sends
with each Heartbeat packet. The Run Control Host can instruct the CFO to override the default packet on any
clock or series of clocks.

1.3.6 CFO - Command Fan-Out

The Command Fan-Out Module (CFO Module) [24] provides an interface between the CFO Host and the DTCs.
The CFO is based on the HiTech Global Kintex-7 (HTG-K700) PCI Express expansion card. This card features
an eight lane Gen 2 PCI Express interface, a DDR3 SODIMM socket, and a 400 pin FMC connector, all wired
to a Xilinx K325T Kintex-7 FPGA. The FMC connector allows the installation of an FMC card with eight
SFP+ slots. This provides for multi-gigabit serial links for up to eight DTC Links, and ports for the System
Clock and Super Cycle Start inputs. Firmware for the CFO’s FPGA is based on a modified version of the DTC
code.

The CFO module firmware is based on the Kintex-7 FPGA Targeted Reference Design. This reference design
is provided by Xilinx Corporation to allow designs utilising the high bandwidth capabilities of PCI Express,
DDR3 memory, and high-speed I/O to be implemented with significantly less design time required. To do this,
the reference design provides code that implements the PCI Express Interface, the DDR3 memory interface,
and a high bandwidth DMA engine. Two high bandwidth ports are provided to allow user developed code to
be connected to the reference design. In the case of the CFO module firmware, the DTC link controller code
is connected to the two high bandwidth user ports. One port is dedicated for DTC data, and the other is
dedicated to DTC status and slow controls.
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A DMA channel provided by the Northwest Logic DMA Back-End Core provides a DMA engine to transfer
data between PCI Express and the DDR3 memory on the CFO card. DMA Channel 0 is used to write the clock
cycle specific Readout Request information to the Readout Request Information Table in CFO memory.

Once configured, the CFO will issue a Heartbeat Packet for each System Clock cycle (µBunch) of a Super
Cycle. A System Clock period is 1695 ns. Four bytes of cycle specific data are taken from the Heartbeat
Information Table and output along with the timestamp in the Heartbeat Packet. For loopback diagnostic
functionality, a given readout link’s SERDES can be put into loopback mode. All packets queued for transmission
on that link will then appear in the input buffer of the associated readout link.

From a software point of view, all packets are 16 bytes in length. Note that the hardware appends four bytes
to the packet before transmitting it over a high speed link. These four extra bytes are then stripped from the
packet by the hardware upon reception. The extra bytes are noted in the packet descriptions below as a two
byte 8b-10b K/D character header and two CRC bytes. The K/D character header, and the CRC bytes are not
included when generating the CRC value. These characters will not appear in the input buffer with received
packets when in loopback mode. About 8b-10b codification a more in deep section is dedicated later in this
document.

The CFO Instruction Table is stored in memory on the CFO module. Populating the table is done via a
DMA transfer to DMA port 0. Each table entry is 64 bits wide and corresponds to one CFO Instruction. The
size of the table (corresponding to the number of instructions) is configurable via the CFO Instruction Table
Size Register.

The CFO module receives the timestamp preset value from the CFO Host. The interface mirrors the DTC
Link interfaces, in that it is an SFP+ socket populated by a multi-mode optical fiber transceiver operating at
either 2.0 Gbps or 2.5 Gbps decoded (2.5 Gbps or 3.125 Gbps 8b10b encoded). Of the eight SFP+ channels on
the CFO, all are available for connection to DTC links. The CFO also connects to the System Clock and the
Super Cycle Start signals. All Readout Request Packets are queued by the CFO until the next positive System
Clock edge.

1.4 Timing System

The TDAQ will generate a continuous Mu2e System Clock with frequency of 40 MHz at the Run Control Host
Clock Fanout module (CFO). The CFO also receives the RF-cavity 0-crossing marker from the Accelerator.
Note that this marker signal is synchronous with the arrival of proton pulses every 1695 ns to Mu2e and is only
active through a ∼43 ms spill. There will be at least 100 µs of markers without proton pulses to start each
spill. The time between spills is arbitrary, minimum is on order ∼5 ms.

The CFO outputs a “punched” or “encoded” clock indicating the start of the Mu2e event window, which
is synchronous with the Accelerator marker during beam ON to 10 ns accuracy - the “punch” or “marker” is
a change of the duty cycle of two cycles of the clock to either 25%/75% duty cycle, or 75%/25% duty cycle.
These two encodings are alternated so that a lost marker can be identified by the ROCs.

This encoded clock will be fanned out and distributed to outside the cryostat in the detector hall. Because of
the grounding requirements, the TDAQ will distribute the signal optically from the TDAQ room to the Detector
Hall (i.e. 20 optical fibers). Then the optical can be converted to electrical co-ax (SMA) in the detector hall
on detector ground. The detector subsystems are responsible for distribution inside the detector vacuum and
further fanout stages as needed (i.e. 18 encoded clock signals to 216 Tracker ROCs and 192 Calorimeter ROCs).

The end of the marker on the encoded clock marks the start of the next event window. Event windows are
contiguous in time although detectors may have a “live gate” within an event window. During beam ON, the
event windows will have duration 1695 ns, and during beam OFF, the event windows can be different duration
but a multiple of the System Clock period. Identifying beam ON versus beam OFF can be done independently
per 43.1 ms spill using two configurable timeout parameters such as 100 µs leading into beam ON and 5 µs
leading into beam OFF.

The data links to the front ends will be used to send a 16 byte Heartbeat packet describing the next event
window before each event window begins. This packet includes an 8 bit TDC value predicting the relative
phase of the next event window and the System Clock to better than 1 ns resolution. This packet also provides
“live gate” info and a 48 bit Mu2e System Timestamp (no wrap-around for 15 years) labeling the next event
window. Heartbeat packets are not transmitted during the period 50 ns before and after the event window
marker. The front ends can use the information distributed from the TDAQ however needed (i.e. if 10 ns
resolution is enough, the front ends can ignore the 8 bit TDC value). There are at least two ways to recover
the System Clock at the front ends. Most FPGAs can recover a clock to better than 200 ps jitter. External to
FPGA clock recovery and jitter cleaner circuits can recover the clock to better than 1 ps jitter.

The System Clock is not guaranteed to arrive to all detector ROCs phase aligned. Phase alignment at
individual ROCs is accomplished by an adjustable delay at the ROC clock input. Additional alignment is
provided by software or firmware calibration and may result in internal timestamp synchronisation offsets.
Each ROC generates its own internal high speed digitisation clocks, phase locked to the System Clock. A Clock
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Generator on the ROC is programmed via the DCS connection to drive the digitises at any N/M multiple of
the System Clock. Each ROC also generates an internal timestamp for timing data within the Event window.
This phase alignment and internal timestamp synchronisation offset can be calibrated across detectors using
cosmic rays or proton pulses.

To accommodate the new point-to-point topology for the Tracker and Calorimeter, forced by the design
decision to go to a single bi-directional VTRx at the ROC, the System Clock and event marker will be transmitted
over the serial link running at 4.0 Gbps. The 40 MHz System Clock will be represented by a special clock
marker. Both the clock marker and the event marker will be represented by two 8b-10b K-characters, that are
only transmitted on a System Clock edge. By only transmitting on System Clock edges, the System Clock can
be extracted and event markers can be extracted associated with a System Clock edge. The markers must be
received with fixed latency with respect to the source to maintain ROC-to-ROC synchronisation. Fixed latency
over the serial links is achieved by removing as much elastic buffering as allowed in the SERDES throughout
the data path. Note that after extracting the 40 MHz System Clock at the timestamping front-end ROC, the
clock can be scaled up by integer multiples (e.g. 200 MHz) to be used to timestamp data. Accounting for
the variable latency of the serial datapath from ROC to ROC is handled by coarse and fine granularity delay
offsets implemented at the timestamping front-end. Determining the offset to apply is achieved by loopback to
determine the latency of the datapath.

1.4.1 Timestamps

Each Readout Controller generates its own internal timestamp for data within an event window. This internal
timestamp counter is driven by the digitisation clock and is reset at the beginning of an event window. It may
be 1 or 2 bytes, depending on the resolution of the detector. The digitisation clock frequency is determined by
the ROC and can be different across different detectors. In addition to the internal timestamp generated by
each ROC, there is a System Timestamp generated by the Command Fanout Module in the Run Control Host.
This is a six byte value which increments for each event window. It has a range of at least 15 years. It can
be stopped and restarted at any value as long as the new start value is higher than the previous stop value.
The System Timestamp can be correlated with actual calendar time, or the high bytes can represent a Run
Number, supercycle, etc. The System Timestamp is sent by the CFO to the DTCs at each System Clock. The
DTCs broadcast the timestamp to all attached ROCs in a Heartbeat packet. The DTCs also send a System
Timestamp as part of Data Request packets, and the ROCs return the System Timestamp in the Data Header
packet. Sending the System Timestamp directly to the ROCs for each event window (instead of relying on a
timestamp generated from the ROC itself) avoids loss of ROC event synchronisation with the rest of the system
as a result of missing or extra decoded event windows. The System Timestamp counter increments for every
event window. The event windows are contiguous during a run, whether or not there is beam. This allows
readout (e.g., acquisition of calibration or pedestal data) at any time in the accelerator supercycle. The System
Timestamp is the only value used for event identification in the TDAQ system. Events are not renumbered
following various stages of filtering.

1.5 TDAQ Software: artdaq

The software architecture is based on artdaq. This software runs on TDAQ servers and on dedicated control
and monitoring computers. artdaq is a toolkit of C++ 2011 libraries and programs for use in the construction
of TDAQ systems. It provides functionality that includes the following:

• management of the readout and configuration of the TDAQ hardware. This makes use of experiment-
supplied software components.

• routing of data between threads within a process, between different processes, and between different
machines, and for assembling complete events from these data.

• encapsulation of the data being routed, and support for experiment-specific raw data formats to provide
type-safe data access.

• event analysis and filtering using the art event-processing framework.

• basic control and monitoring applications.

• infrastructure for distributing configuration data to TDAQ processes.

The artdaq data acquisition toolkit is used to build the Mu2e TDAQ software system. artdaq provides
software applications for managing the data flow as well as libraries and applications for encapsulating the data,
analyzing the data, and performing other basic data acquisition functions. The core data-flow applications in
artdaq consist of the following:
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Figure 4: artdaq Architecture: core components are shown with a blue background, while experiment-supplied
components are shown with a white background.

• BoardReaders that configure and read out hardware modules, and send data fragments to EventBuilders;

• EventBuilders that assemble full events and pass the events to instances of the art analysis framework for
reconstruction and filtering;

• Aggregators that organise events in time order, write them to disk, and analyse them to monitor the
quality of the data.

Figure 5: artdaq components. Applications and infrastructure components that are shown in green are part of
the core artdaq toolkit. Components shown in orange are modules that experiments provide to read out their
specific hardware and perform their specific analyses and monitoring.

These applications are shown in Figure 5 along with additional components that are part of artdaq. The
additional components include infrastructure for sending and receiving control messages, managing the state of
individual processes and the full system, logging messages to central loggers and viewers, and the sending and
parsing of configuration parameters.

The toolkit is designed to provide core functionality while allowing experiments to customise the hardware
readout and event analysis as needed.
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Key term are of the TDAQ Software are: online DAQ software, artdaq, art and otsdaq.
The term “online DAQ (data acquisition) software” refers to the software used to monitor, select, and

validate physics and calibration data for the experiment. It is easy to creep the scope beyond above. For
example, the above often involves the need for some control of the front-end electronics, so the extreme would
be for all control of the front-end electronics to go through the online DAQ software. Other scope creeping
features might include configuration parameters, configuration change tracking, user access permissions, user
preferences, etc.

Acronym for “art data acquisition” artdaq is a data acquisition toolkit which provides functionality for
data transfer, event building, event reconstruction and analysis (using the art analysis framework), process
management, system and process state behavior, control messaging, local message logging (status and error
messages), DAQ process and art module configuration, and the writing of event data to disk in ROOT format.
In general, the artdaq toolkit includes one or many ways to do things, and it is left to the experiment to choose
the tools from the toolkit and provide the glue for a complete system.

art is not an acronym, it is an event-processing framework for particle physics experiments, like Mu2e.
Experiments use the art framework to build programs that process data in a variety of contexts: high-level
software filters, online data monitoring, calibration, reconstruction, simulation, and analysis. Mu2e offline uses
art, Mu2e online uses artdaq and thus art as well. For example, the Mu2e online trigger decision is made by a
set of art modules running in the online environment (but primarily developed in the offline environment).

otsdaq is an acronym for “off-the-shelf data acquisition.” ots for short. It is the online DAQ software
framework that Mu2e has chosen. otsdaq uses the artdaq DAQ framework under-the-hood to provide data
handling flexibility and scalability. In addition, otsdaq provides a web interface to configure, control, and
monitor the online DAQ software entities. In general, otsdaq has chosen the tools from the artdaq toolkit
for the experiment, and provided the glue for a coherent experience for all users (shifters, experts, etc.) from
Chrome or Firefox.

otsdaq and artdaq are developed by the Fermilab Scientific Computing Division and developments are in
two directions: server side and web side. About the online DAQ software development, server side is C++.
User code is added through plugins (C++ classes inheriting from the appropriate class). Types of Mu2e online
DAQ software plugins are:

• Front-end interfaces - code to communicate with an external device, e.g. there’s a plugin for the DTC,
and for each type of ROC

• art modules - e.g. trigger modules, online monitor modules

• artdaq Fragment Generators - code to decode data and transmit to artdaq event builders

• Data processors - code for custom data handling, e.g. datastream-to-ROOT for Visualizer

• Configuration table handlers - code for custom handling of configuration data, e.g. to output FHiCL,
or provide helper-abstraction functions like getVolume() of object with size specified in configuration
parameters.

Web side is HTML and JavaScript. User code is added in the form of web-apps through .html files (including
the appropriate .js and .css files). Any custom user web-apps for Mu2e is not been generated yet, but the facility
is present. For example, overlaying Calorimeter ROC temperature color-coded on a 3-D representation of the
detector with slider controls to set thresholds, this would be a custom user web-app.

All data filtering and triggering in the Mu2e TDAQ architecture is done in firmware or software. The
production TDAQ will use 36 dual-CPU servers. The online processing system must handle a total rate of
200,000 events per second, an average of 5,600 events per second per server. The art analysis framework will be
used as the environment in which the online processing algorithms are executed. It provides the infrastructure
for running software modules that are provided by experimenters and managing the data that is analyzed and
produced by the analysis modules. It has been developed at Fermilab for use in current and future intensity
frontier and cosmic frontier experiments, and it is currently used in the offline environments of the Mu2e, NOvA,
LBNE, and other experiments. It is also currently used in the TDAQ system of the DarkSide-50 experiment,
which is also artdaq-based. The use of the same analysis framework online and offline has substantial advantages,
most notably the ability for physicists to develop algorithms independently of the full TDAQ system and move
them to the online environment when they are ready. Within the TDAQ system, EventBuilder processes handle
the starting of art threads and the transfer of full events to art for analysis. It also handles the configuration
of the art framework and the analysis modules using the configuration parameters that it receives from Run
Control. The same configuration language is used to configure artdaq processes as is used to configure art.

As part of the software interface to the DTC, a Linux device driver for communicating over the server PCIe
bus is being developed. The driver will be responsible for managing the buffers into which the data is written
when it is received from the ROC, responding to the interrupts when DMA transfers complete, notifying the
user code that data is available, and delivering the data to the user code.
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1.5.1 otsdaq

otsdaq is the Ready-to-Use data-acquisition (DAQ) solution aimed at test-beam, detector development, and
other rapid-deployment scenarios. As stated earlier, otsdaq uses the artdaq DAQ framework under-the-hood,
providing flexibility and scalability to meet evolving DAQ needs and provides a library of supported front-end
boards and firmware modules which implement a custom UDP protocol. Additionally, an integrated Run Control
GUI and readout software are provided, preconfigured to communicate with otsdaq firmware. otsdaq comes as
a web page. The ots web desktop environment is your portal to all of the possibilities of otsdaq. Briefly, desktop
features are: same user on multiple browser tabs, monitors and computers, configurable desktop window icons
and folders with access permissions, window layout presets (Global and per user) and window manipulations
(Tile, resize, move, minimize, maximize, refresh, close).

Front-end interfaces are plugins that are considered to be the specifics for how (i.e. C++ to write and
read) to interface to a device external to otsdaq. In particular, otsdaq is used to control the DTCs. The DTC
Client library is the low level interface code to the TDAQ Data Transfer Controllers. It provides the PCIe
interface functionality, and implements handling the packet protocol that the DTCs and readout controllers use
in Mu2e. The otsdaq front-end interface plugin for the DTC is a wrapper around the DTC Client library and
the DTC Board Reader. otsdaq presents a State Machine, visible in figure 3.16, that allows to easily configure
and run DTCs. Macro Maker is a tool that allows the user to execute front-end interface writes and reads,
and build sequences of writes and reads, i.e. macros. Macros can be saved per user or made public for all
users. Macro Maker is useful for low level debugging of front-end interfaces, and early development. Macros
can be exported to C++ or directly to a target plugin as a FE Macro. FE Macros are C++ member functions
of a front-end interface plugin class. The primary utility is that, with no user effort, FE Macros are available
through the web-interface - through the FE Macro Test web-app or custom user web-apps. FE Macros have
strings or numbers as input and output arguments. The FE Macro Test web app also runs generic private
and public macros from Macro Maker. The concept of Macro Maker mode is that anyone (e.g. a firmware
developer) who just wants to use front-end interface plugins with FE Macros, or generic macros, could use this
simplified mode without tracking configuration changes or using the state machine. A FHiCL parameter file is
used to import the configuration. When Macro Maker mode is launched, the state machine is automatically
transitioned through to the Configured state.

Another feature is the configuration tree. The configuration tree defines the hierarchical relationship between
all entities in the online DAQ system, and all of their parameters. When otsdaq is launched, the executables
that start are the ones enabled in the configuration tree for that node. Then later, when the state machine
transitions to the Configured state, the children of the executables are instantiated based on the parameters
defined by the chosen configuration alias. Configuration alias maps to a configuration tree which fully defines
the online DAQ configuration (likely, the configuration alias string and the translation to group name and group
key gets recorded in the run conditions database). A configuration tree can have multiple roots and multiple
branches (as shown on the bottom-right). At the lowest level, otsdaq stores configuration data in tables and
tracks table changes as versions. The configuration tree is an abstraction extracted from groups of tables. Any
entity that needs configuration parameters can have read-only access to the configuration tree API - with calls
like getChildren(), getNode(), and getValue() - and access to the table plugins and their helper abstraction
functionality.

Other features are the console and the code editor. The console web-app help users exist remotely and
remove the need to access the linux terminal. The console core functionality is built on artdaq message facility.
Messages have labels, line numbers, and severity; they can be filtered, and user preferences are saved per user.
Printouts to the terminal, log files, or the web console can be generated from any user plugin code by using the
ots output macros. The code editor web-app is a tool that allows for editing and viewing of source code and text
files. Configurable permission levels give write access or not. The code editor has vertical and horizontal view
split, and can spawn multiple browser tabs and windows. The code editor might help developers standardise
code format, encourage collaboration, and allow for remote development.

ots uses artdaq database as its external database interface. artdaq database is a JSON document based
database which can be persisted on the filesystem or by mongodb. When a new table version is created by ots,
a new JSON document is created in artdaq database. For redundancy and high availability, mongodb is used.
The approach is to have replica sets which each maintain the same data set, and then a cron job that automates
daily backups to a directory tracked by TiBS (Fermilab Core Computing backup/restore service).

Data processing is the primary responsibility of the online DAQ. Mu2e’s event window data will be processed
through artdaq modules. However ots allows for data processor plugins in general (i.e. interfacing to artdaq
makes use of particular data processor plugins provided by otsdaq core functionality). Data processor plugins
inherit generic data handler functionality, and can add custom handling beyond that. For example, an aspect
of the ots visualization tools make use of specialized data processor plugins that generate ROOT objects that
can then be viewed in the web desktop. Users can make ots data processor plugins for any purpose they
dream up. When the artdaq data processor plugin is used in otsdaq, users have access to the flexibility and
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scalability of artdaq. The artdaq data processor plugin instantiates an artdaq Board Reader with a Fragment
Generator plugin. Based on the configuration of the online DAQ system, the user can also instantiate artdaq
Event Builders, Dispatchers, and Data Loggers. For Mu2e, there will be a Board Reader for each DTC, one
Tracker/Calorimeter Event Builder per server, (each running the trigger algorithm with as many art analyzer
processes as fit on the server, around 20), a second-level Event Builder which will integrate CRV data, several
Data Loggers on dedicated nodes for writing data to online storage, and several Dispatchers to provide online
data quality monitoring. artdaq tracks a large number of metrics covering pretty much everything about event
rate and dataflow, which can be enabled at the metric plugin level; the user can send a subset of metrics to
EPICS, everything to Ganglia, and only the most important ones to a file, all at the same time.
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2 Internship Tasks

During the internship, I have mainly worked on the software development of otsdaq. The developments of otsdaq
are in two directions:

• Server side: User code is added through plugins (C++ classes inheriting from the appropriate class).

• Web side: The user can design custom web-apps to introduce further functionalities.

Figure 6: otsdaq code base structure.

The idea behind otsdaq is to encapsulate one or more instances of artdaq and allows the users to interact
with them through a user-friendly web-app. As already explained in the introduction, both artdaq and otsdaq
are are open source and developed by the Fermilab Scientific Computing Division. In the past, each Fermilab’s
experiment used to develop its own platform for data acquisition, there was no standard. Therefor, they decided
to develop a unique framework which could be extended with further functionalities based on the requirements
of the experiment. In this way, each new experiment can leverage on what has been already developed by past
experiment without starting every time from scratch, it is easy to understand that this approach aims to have
more robust and less error prone software.

Figure 7: Me listed as one of the contributors of otsdaq.

In this section I am going to explain the main task on which I work on and how they helped TDAQ subsystem.

2.1 Vertical Slice Test

A vertical slice test is a top to bottom, fully implemented and tested piece of functionality. Instead of testing
the whole architecture, which could be really expensive in terms of complexity, we focus only on all the compo-
nents involved in the architecture without taking in consideration how they scale, but just considering a single
instance. This test is really important in order to understand if each component and the designed protocol of
communication are working properly.

In our case, the vertical slice test consists of data transmission between the detector and the DAQ, which is
composed by:

• Data request, starting from the server;

• Data reply, coming from the ROC;
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Figure 8: Components involved in the vertical slice test.

• Check if the response is the one expected.

The module of ots used for the test is the FE Macros, which allows the user to interface with the electronic
boards. The macro implemented is called “buffer test”, which can send a request for a user-specified number of
events and wait for the respective responses. The response has been encoded in JSON format which is human
readable and easy to understand allowing the users to check if the various headers of the protocol and payload
are the expected one.

The test was successful, and we were able to send a request for up to 2300 events per time.

Figure 9: Example of the response returned by a buffer test. Note that the payload contains a counter because
we are in the hardware development phase of the boards.

Thanks to this macro, we discovered that if we try to ask for more events the boards start sending back
timeout signal, which is not the expected behaviour and it needs to be deeply explored by the subsystem team
that is working on the development of the ROCs.
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Figure 10: DIRAC, developed by the INFN of Pisa, used during the test.

2.2 FEMacro History

One the functionalities of otsdaq I have implemented is the history view of the FE Macros module. The
development team was pushing a lot for this functionality, because it allows the user to quickly check the last
command run with the respective parameters. Having this view makes life easier during the debugging phase,
because we can check which combination of commands raise the error and being able to reproduce it is the first
step to solve it.

Figure 11: History view of the FE macros module.

The history is stored on the server side as file to keep it consistent across different sessions of the user. There
is a history file for each user and they are handled independently, in this way users can also share the history’s
file among them to test different solutions to a given sequence of commands. The user can also clear the history
by pressing a button of the UI.

2.3 Timing Synchronisation

As explained in the introduction, the clock synchronisation among all the boards is fundamental to bind an
event to a certain timestamp. The CFO spreads the clock first to the Data Transfer Controller (DTC) boards.
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The DTCs are configured in a chain: the first one extracts the 200 MHz clock and passes it to the next one. To
prevent jitter accumulation, all the DTCs are also receiving a 200 MHz Reference Clock from the RTF module.

Figure 12: Snapshot of the TDAQ architecture deployed in DAQ room. We can see how tricky the Event
Window synchronisation can be.

The various ROCs involved in the architecture can have different clocks because the signal travel through
different number of boards and through fibers or cables of different length.

Figure 13: Example of ROCs with different clock.

To line up Event Windows the approach is to delay each front-end to match front-end with longest latency.
To calculate the delay to introduce in each board we use the loopback signal, so we can determine the round-trip
time (RTT) by sending a marker to the ROCs and measure the time which the marker spend to come back
to the CFO. We can repeat this operation many times to compute an average RTT. Once we know the timing
path latency for each front-end, we can calculate each front-end’s delay offset:

delay offset = longest timing path latency–individual timing path latency

The loopback test is performed during the “start” phase of the state machine, and it is divided in steps. At
each step:
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Figure 14: Scheme of the RTT computation.

• DTCs prepare the path which will be follow by the marker to reach the target ROC of the current step.

• CFO sends the markers on its links.

We assume to have a full topology, so 8 DTCs for each chain and 6 ROCs for each DTC, this allows an
easier configuration where the user has only to specify the number of chain and the links of the CFO involved.

I proposed to use the same mechanism to create a new mode, which I call ”Discovery mode”, which can be
use to asses the actual topology of the TDAQ deployed. By sending the marker across the topology, we can
trace which ROCs are sending back the responses. At the end of the process the system gives a detailed report
about which ROCs are reachable and which are not. This report can be used to check if the actual topology
is equal to the expected one. In this way, it’s easier to spot if ots is properly configured or if some component
is not working. To understand if ROC is present or we send a marker to each link and we wait for an echo
reply, if we wait for too long the CFO rise a timeout and we record the link as dead. Unfortunately, the CFO
framework was not ready to handle timeout of the loopback signal so I was not able to test the new mode,
but it is already implemented in software so I assume that it will be eventually test.

Figure 15: Example scheme of the Discovery mode.

2.4 FEMacro Sequence

One of my last tasks aim to help the working-groups who are focusing on the hardware development of the
ROCs. They frequently update their boards by adding new registers or changing configuration procedure.
Therefore, they need new macros every time they change the design of the boards to check if the new design is
working properly. Writing new macros for each new change is not the best approach, so we decide to allow the
user to build their own configuration sequences by chaining together simple macros. Once they find a sequence
which is working fine it will be easily converted in a new atomic macro.

The sequence of commands is stored similarly to the history file, in this case each sequence is stored on the
server side as a single file. The various working groups can exchange the various sequences among them and
easily work together. The sequence is composed by FE Macros with the respective parameter, the user can run
the whole sequence in an atomic way or to go through the sequence step-by-step. This last option could be
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Figure 16: Scheme of the development process.

useful during debugging. Between the macros, the user can also add delays which may be helpful to leave time
to the boards to run internal configuration procedures by itself. The result of a sequence is shown as a list of
all the results of each step.

2.5 Search bar

One minor task which I work on is the implementation of a search bar in the tree-view configuration menu.
otsdaq is known to be difficult to configure, because it is really customizable so there could be many differ-
ent configuration fields. Therefore, looking for a specific field could be difficult. In order to speed up the
configuration of otsdaq I add a search bar to the GUI which highlight the fields containing the specified key
word.

Figure 17: Configuration tree-view with the search bar.
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3 Conclusion

My experience with the Mu2e TDAQ team was incredible. I have learnt a lot, not only from software point
of view but also from the hardware side and how it is important to have an all around knowledge of all the
components of the experiment in order to design the most efficient software possible. Every component of
the team has been always available to spend time with me explaining the details of each specific module or
component. In addition to the technical skills, I have also trained few soft skills such as time organisation of
multiple projects and presentation skills, really important when you have to show to all the team the progresses
achieved during the week. It was really interesting to work in a team composed by members with really different
background and years of experience. I appreciate the support of Professor Mambelli in all the organisational
stuff of the summer school and a special thanks goes to my supervisor, Micol Rigatti, who does not only
supported me, but she also trusted me by giving to me roles of responsibility in the design and development of
the TDAQ. Can’t wait to see the Mu2e experiment up and running.
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