
Fermi National Accelerator Laboratory

GQuEST Project

Controlling Optical Cavities using
Machine Learning

Author:
Edoardo Fazzari
edoardo.fazzari@santannapisa.it

Supervisor:
Chris Stoughton

stoughto@fnal.gov

Monday 25th September, 2023

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

Contents

1 Introduction 3

2 Materials and Setup 5
2.1 Mephisto Laser . 5
2.2 Red Pitaya . 6
2.3 Optics Layout . 9
2.4 Red Pitaya’s Connections . 10

2.4.1 Red Pitaya’s Radio Frequency (RF) Inputs 10
2.4.2 Red Pitaya’s Radio Frequency (RF) Outputs 12
2.4.3 Red Pitaya’s Analog Outputs 13

2.5 Oscilloscope’s Connections . 13
2.6 Reading Temperature . 13

2.6.1 TMP35 Temperature Sensor 14
2.6.2 LabJack U3-HV . 14

3 Experiments & Results 15
3.1 Initial Temperature . 16
3.2 Lock Maintaining . 17
3.3 Software Control for Lock Maintaining 17
3.4 Reinforcement Learning & Temporal Difference Learning for Lock

Maintaining . 19
3.4.1 Q-Learning Control . 21
3.4.2 Double Q-Learning Control 25

4 Python Code 26
4.1 RedPitayaController Class . 27

4.1.1 Constructor . 27
4.1.2 Setting and Resetting Red Pitaya’s Outputs 27
4.1.3 Reading the Scope . 29
4.1.4 Temperature Scanning . 30
4.1.5 Piezo Handling . 30
4.1.6 PHD Lock . 30
4.1.7 Maintain Lock: Software Control 32

4.2 RedPitayaQLearning Class . 32
4.2.1 Constructor . 32
4.2.2 Utils . 33
4.2.3 Learning . 33
4.2.4 General Utils . 35

4.3 RedPitayaDoubleQLearning Class . 35

1

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

4.3.1 Constructor . 36
4.3.2 Utils . 36
4.3.3 Learning . 37

5 Conclusion 39

2

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

1 Introduction

The GQuEST experiment endeavors to investigate the unification of Quantum
Mechanics and General Relativity within the realm of quantum gravity. This pursuit
constitutes a well-established conundrum in the field of physics, characterized by its
formidable nature due to the infinitesimal effects manifesting at the Planck scale,
which measures a mere 1035 meters. A remarkable facet of the GQuEST experiment
is its capacity to predict observable manifestations of Quantum Gravity on a larger
and more accessible scale.

The fundamental concept underlying this experiment entails the transmission of a
laser beam to a beam splitter. The incident light is then divided into two paths,
subsequently returning along those paths. Unlike a conventional interferometer,
which primarily monitors changes in mirror positions induced by room vibrations or
the passage of gravitational waves, the GQuEST experiment pursues a more subtle
objective. Lie et al.[5] present a model operating in four dimensions, wherein the
metric properties manifest as oscillations in the dimensions of a sphere, dictated by
a scalar field denoted as ϕ:

ds2 = −dt2 + (1− ϕ)(dr2 + r2dΩ2) (1)

The influence of the ϕ term modulates the spatial dimensions, introducing minute
variations. This scalar field, ϕ, is an exceedingly small quantity that orchestrates
the dynamic expansion and contraction of the sphere (see Figure 1), leading to
alterations in distances. The quantum fluctuations in this scale subsequently engen-
der fluctuations in the round-trip time taken by a photon to traverse the distance
between mirrors in an interferometer. By constructing an exceptionally sensitive
interferometer[13], it becomes conceivable to detect and characterize these fluctua-
tions, offering a pathway to the detection of quantum gravity phenomena.

To achieve the level of laser sensitivity required for our experiment, it is essential
to ensure a consistent emission of waves with a fixed wavelength. While it is a
well-established fact that lasers typically emit waves of uniform wavelength, it is
important to note that certain factors, such as the temperature of the crystal and
the physical size of the crystal, can introduce minor variations in wavelength. The
central aim of our experiment is to employ a Pound-Drever-Hall[2] technique to sta-
bilize the laser output, maintaining it in an optimal Gaussian mode. Subsequently,
the stabilized laser will be directed into an interferometer, specially designed to se-
lectively filter out photons and other signal components, allowing only those photons
associated with quantum gravity to reach the photon counter (see Figure 2). The
core premise of our approach hinges on a binary outcome: a complete absence of
detected photons would cast doubt on the validity of our theoretical framework,

3

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

Figure 1: Setup of the interferometer. (Credit Lie et al.[5])

whereas the detection of any photons would serve as a strong indication of the
presence of quantum gravity phenomena.

Figure 2: Simplified setup of GQuEST.

To achieve laser output stabilization, it is essential to establish a precise wavelength
configuration where 2L/λ assumes an integer value. Under these conditions, the light
entering the optical cavity undergoes repeated constructive interference, resulting in
exponential growth within the cavity. Subsequently, a fraction of this amplified light
escapes from the rear end of the cavity. Once the desired transverse electromagnetic
mode (TEM00, see Figure 3) has been located, the subsequent objective involves
maintaining the stability of the cavity. In pursuit of this goal, which constitutes the
crux of our research, we have harnessed Reinforcement Learning (RL) algorithms
to train an autonomous agent. This agent is tasked with dynamically adjusting the

4

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

temperature of the laser’s crystal in response to fluctuations in the optical signal
emanating from the cavity.

Figure 3: Hermite Gaussian modes.

The primary contributions of this research encompass:

• The development of dedicated software for electronic temperature control of a
Mephisto laser.

• The creation of software capable of autonomously identifying the TEM00 mode
within the optical cavity.

• The successful training and testing of a Q-Learning Agent, designed to preserve
system stability by adapting to variations in the optical output.

• The effective training and testing of a Double Q-Learning Agent, similarly
geared towards maintaining system stability by responding to changes in the
optical signal emerging from the cavity.

2 Materials and Setup

In this sections all the devices that were used in the experiment are described along
with the optical layout.

2.1 Mephisto Laser

The Mephisto laser system (documentation) consists of two self-contained units,
the laser head and the control electronic unit, as depicted in Figure 4a and Figure 4b.

5

https://wiki.nikhef.nl/gravwav/images/6/6f/Innolight_Mephisto_Laser.pdf

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

In order to operate the Mephisto laser system, the control electronics unit needs to be
connected to the laser head. The provided electrical power is converted into coherent
narrow bandwidth radiation with an efficiency of about 30%. The remaining power
heats the diode laser, which must be cooled to prevent overheating. Furthermore,
the wavelength of the diode laser depends on the junction temperature. Therefore,
temperature stabilization of the diode laser is essential.

The wavelength of the Nd:YAG laser light also depends strongly on the crystal tem-
perature, consequently the Nd:YAG laser crystal must be temperature stabilized
as well. The control electronics unit is designed to provide all required subsystems
to drive and control the Mephisto laser system, a schematic representation can be
found in Figure 4c and Figure 4d:

• a Laser Diode Driver that provides a very stable, low noise injection current
to the diode lasers up to a value of 3A. This subsystem also contains the
protection circuitry that is essential for reliable operation of the laser system
and a temperature controller that regulates the diode laser temperature.

• a Precision Temperature Controller that stabilizes the Nd:YAG crystal’s tem-
perature. Because of an integrated pre-stabilization stage, typical drifts of this
controller are only a few 100 µK/min, corresponding to a variation of the laser
frequency of less than 1 MHz/mm.

• analog modulation inputs (BNC connectors) for diode laser current and laser
crystal temperature to externally control output power and laser frequency of
the Mephisto laser system.

• a diagnostic connector (D-Sub connector) to monitor all vital signals and volt-
ages of the Mephisto laser system without opening the control electronics
unit.

The frequency of the Mephisto laser can be tuned by changing the temperature of
the monolithic laser crystal. This can either be done directly at the front panel of
the control electronics unit using the appropriate dial or trimmer (see Figure 4),
which results to be a tedious task, or by applying a voltage to the Laser Crystal
temperature modulation input at rear panel of the control electronics unit, our
objective.

2.2 Red Pitaya

The Red Pitaya used is a STEMlab 125-14 (https://redpitaya.com/product/
stemlab-125-14/) with 512MB (4Gb) RAM, the system memory is a Micro SD
10Gb. All specifications are summarized in Table 1.

6

https://redpitaya.com/product/stemlab-125-14/
https://redpitaya.com/product/stemlab-125-14/

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

(a) Mephisto laset head
(b) Mephisto control electronics
unit

(c) Front panel of the Mephisto
control electronic unit

(d) Rear panel of the Mephisto
control electronic unit

Figure 4: Laser setup

Figure 5: Red Pitaya’s extensions

7

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

Table 1: Device Specifications

Category Specifications
RF Inputs
Channels 2
Sample rate 125 MS/s
ADC resolution 14 bit
Full scale voltage range ±1/± 20 V
Input coupling DC
Bandwidth DC-60 MHz
Input impedance 1 MΩ
RF Outputs
Channels 2
Sample rate 125 MS/s
ADC resolution 14 bit
Full scale voltage range ±1 V
Load impedance 50Ω
Shortcut protection Yes
Typical raising/falling time 2 V/10 ns
Bandwidth DC-60 MHz
Extension Connection
Digital IOs 16
Analog inputs 4 channels: 0-3.5 V 12 bit
Analog outputs 4 channels: 0-1.8 V 12 bit
Communication interfaces I2C, SPI, UART
Available voltages -4 V, +3.3 V, +5 V
Synchronization
Trigger input through extension connector
Daisy chain connection over SATA connection
Ref. clock input N/A

8

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

2.3 Optics Layout

Figure 6 shows the optics layout set at the CryoModule Test Facility (CMTF) at
Fermilab. The details are the following:

1. Laser: 2W Mephisto laser.

2. Attenuator + beam stop: attenuating the power to about 65mW; beam
stop receives the remaining power. This is done to not damage the phase
modulator or the Faraday isolator.

3. Lens: to ensure that the beam’s size is substantially smaller than the phase
modulator’s aperture.

4. Phase modulator: has an aperture about 2mm (diameter) and the lens.
Receives an RF signal from the Red Pitaya and imprints phase modulation
sidebands on the laser light at about 25MHz offset of frequency. The effect is
shown in Figure 7.

5. Lens: needed to refocus the laser beam and to put a waist in the center of the
Faraday.

6. Lambda/4 waveplate: change the phase lag between the incident light’s
electric and magnetic fields.

7. Lambda/2 waveplate: change the light’s polarization direction. The two
waveplates are aligned so that as much power as possible goes through the
Faraday isolator.

8. Faraday isolator: it is a device which transmits light in a certain direction
while blocking light in the opposite direction. There is a power loss, 60mW
out of the isolator compared to the 65mW in. The lost power is mostly due to
residual polarization mismatch, not due to losses or clipping. The remaining
5mW is dumped on a beam stop.

9. Pair of steering mirrors: placed roughly 90 degrees of Gouy phase apart,
so they are roughly orthogonal actuators.

10. Three mode matching lenses: to match the incident laser beam’s mode to
the optical cavity’s fundamental TEM00 mode.

11. Cavity: the beam is almost entirely reflected, even on resonance cince the
cavity’s back mirror is a high-reflector. However, some light does leak out of
the cavity, which we monitor with a camera and a photodetector (PD)

12. Camera and photodetector: allow to tune up the alignment and to set
the laser’s temperature such that the TEM00 mode is within the frequency

9

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

Figure 6: Optics Layout

adjustment range of the laser’s piezo-actuated fast frequency control.

The light reflected back towards the mode matching lenses and the alignment mirrors
interacts with the circulator (Faraday isolator) and is reflected to a lens and fast
(125MHz) photodetector (PDref, 13). There are lens to focus the beam onto the
small-area PD where it is sent to the Red Pitaya.

2.4 Red Pitaya’s Connections

In this section Red Pitaya’s connections are described. Figure 8 schematizes all the
connections to the Red Pitaya.

2.4.1 Red Pitaya’s Radio Frequency (RF) Inputs

Our Red Pitaya have two Radio Frequency (RF) inputs:

1. Input 1 is the photodetector’s output (the one next to the Faraday, PDref),

10

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

Figure 7: Phase modulator effect

Figure 8: Red Pitaya’s layout and connection schema

11

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

which measures the optical cavity’s reflected power. This input is modulated
at 25MHz from the phase modulator and it can be written as A sin(ωt), where
ω is 25MHz. We demodulate this signal in the Red Pitaya to generate our
PDH error signal in the following way:

(a) we multiply input 1 to the signal generated by theRed Pitaya, which has
the same frequency ω.

F (t) = A sin(ωt) ·B sin(ωt)

= AB sin(ωt) sin(ωt)

= AB
(1

2i

)2

(eiωt − e−iωt)(eiωt − e−iωt)

=
AB

−4
(e2iωt − 2 + e−2iωt)

=
AB

2
− AB

2
cos(2ωt)

(2)

The cosine term is killed by the low pass filter and the error signal is
obtained.

2. Input 2 is the photodetector’s output (the one after the cavity, PDcav), which
measures the light that goes through the optical cavity. This input is needed
to control the temperature as described in section 3.

2.4.2 Red Pitaya’s Radio Frequency (RF) Outputs

Our Red Pitaya have two Radio Frequency (RF) outputs:

1. Output 1 goes to the laser’s fast frequency actuator and to the oscilloscope
(purple trace), as described in subsection 2.5). This output is generated by
the error signal fed to a PID block in the Red Pitaya, which converts the
error signal into a control signal. The PID fuction in the Red Pitaya, H[ω]
has only a integrator, i.e., there are no proportional and differentiation parts
(Figure 9). Since the actuator want signals between -100V and +100V (see
documentation on page 5) and the range of the Red Pitaya is between -1V and
+1V, we send output 1 to a Piezo driver 1 with a 100x amplification factor.

2. Output 2: Red Pitaya outputs 25MHz with 2V peak-to-peak amplitude am-
plified up to a high-power RF amplifier, powered by an external +24 power

1A piezo controller or driver is used to control the motion of a piezo positioning device for
generating piezoelectricity. Piezoelectricity is the charge created across certain materials when a
mechanical stress is applied. Piezoelectric pressure sensors exploit this effect by measuring the
voltage across a piezoelectric element generated by the applied pressure.

12

https://wiki.nikhef.nl/gravwav/images/6/6f/Innolight_Mephisto_Laser.pdf

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

Figure 9: Actual PID in our Red Pitaya, k=1e3

supply, before going into the phase modulator. This output is needed for PDH
lock.

2.4.3 Red Pitaya’s Analog Outputs

Our Red Pitaya have four analog outputs as described in subsection 2.2, but only
two (i.e., 0 and 1) are actually controllable by the python package we use in our
code:

• Output 0 (pin 17 on EC2) is used to control the temperature of the laser
crystal, and it is connected to the rear panel of the Mephisto control eletronic
unit.

• Output 1 is currently not used.

2.5 Oscilloscope’s Connections

We use an oscilloscope, Figure 10 to monitor the cavity’s transmitted power obtained
from the photodetector located after the optical cavity (blue trace), the voltage sent
to the laser’s fast frequency tuning port by the Red Pitaya’s output 1 (purple trace)
in order to monitor the driver voltage, and the DC power on the cavity reflection
PD (yellow trace).

We usually turn off the yellow trace once the system is aligned. On resonance, the
TEM00 mode has a voltage of 1.44V with the transmission PD’s gain set to 0dB
gain (blue trace). The purple trace should have a voltage in the 0 to 1V range.

2.6 Reading Temperature

Both the temperature within the optical cavity and the ambient room environment
can exert a significant influence on the requisite temperature for maintaining laser
stability in the TEM00 mode. To address this consideration, we have chosen to
incorporate an external temperature sensor, specifically the TMP35, in conjunction

13

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

Figure 10: Oscilloscope used in out experiment.

with a data acquisition system known as the LabJack U3-HV. This integration
enables us to collect temperature data through a Python script utilizing the u3

Python package (available at this GitHub repository). The justification behind not
interfacing the TMP35 sensor with the Red Pitaya lies in the absence of analog input
functionality within the pyprl package, as evident in the ams module code.

2.6.1 TMP35 Temperature Sensor

TheTMP35 is a low voltage, precision centigrade temperature sensors. It provides a
voltage output that is linearly proportional to the Celsius (centigrade) temperature,
and does not require any external calibration to provide typical accuracies of ±1◦C
at +25◦C and ±1◦C over −40◦C to +125◦C temperature range. The main features
are described in Table 2 and IMAGE shows pin configuration.

2.6.2 LabJack U3-HV

To obtain temperature readings to our laptop, we employ a LabJack U3-HV device,
which serves as a multifunction Data Acquisition (DAQ) system utilizing a USB
interface. In order to utilize this hardware component effectively, it is imperative to
install the LabJack Driver and configure the Python package as delineated in the
documentation available at the following URL: GitHub repository.

FIGURE provides an illustration of the configuration for connecting the temperature

14

https://github.com/labjack/LabJackPython/tree/master
https://github.com/lneuhaus/pyrpl/blob/develop-0.9.3/pyrpl/hardware_modules/ams.py
https://github.com/labjack/LabJackPython/tree/master

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

Table 2: TMP35 Sensor Specifications

Feature Specification
Voltage Range 2.7 V to 5.5 V
Calibration Range Calibrated directly in °C
Scale Factor 10 mV/°C (20 mV/°C on TMP37)
Accuracy Over Temperature ±2°C (typical)
Linearity ±0.5°C (typical)
Stability with Capacitive Loads Stable
Temperature Range -40°C to +125°C (operation to +150°C)
Quiescent Current Less than 50 µA
Shutdown Current 0.5 µA (maximum)
Self-Heating Low

Figure 11: TMP35’s pin configuration.

sensors to the LabJack U3-HV device. This setup entails utilizing the Vs output,
which generates a +5V voltage, along with AIN0 and AIN0 to facilitate temperature
data acquisition.

3 Experiments & Results

This section comprehensively delineates the experimental procedures and outcomes.
It is structured into two distinct segments: the first elucidates the methodology
employed for ascertaining the initial temperature requisite for stabilizing the TEM00
mode within the system, while the second expounds upon the strategies employed to
sustain the system in a stable state, adhering to the desired mode. The experiments
are delineated in a chronological sequence that mirrors the order in which they were
conducted.

15

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

Figure 12: LabJack and TMP35 sensors.

3.1 Initial Temperature

Determining the precise temperature alignment corresponding to TEM00 mode can
be a laborious and patience-testing endeavor, as it necessitates the meticulous ad-
justment of a dial on the Mephisto laser’s control unit. To streamline this arduous
task, an automated procedure was implemented. This automated method initializes
the temperature at 22◦C and invokes a computational routine outlined in Algo-
rithm 1. In essence, the Red Pitaya device generates a progressively increasing
voltage through its slow analog output channel. With each incremental voltage
adjustment, accomplished by setting the DAC2 value of the Red Pitaya, a data ac-
quisition is performed, capturing two critical parameters: the signal received from
the PDcav (blue signal) and the voltage applied to the laser’s rapid frequency tuning
port (purple signal). The nomenclature ”orderedScopeTrace” aptly describes this
method because it acquires a scope trace and subsequently restructures the data to
ensure that the voltage ramp exhibits continuous progression without abrupt discon-
tinuities, thereby positioning the trace’s midpoint at the center of the voltage ramp.
The algorithm exclusively relies on the blue signal, discerning its peak position to
determine the termination condition of the iteration. If the peak occurs approxi-
mately at the midpoint of the ramp, within a specified tolerance threshold denoted
as ϵ, the algorithm concludes, yielding a True result. Conversely, if the peak lies
outside this central range, the algorithm continues to increment the voltage value,
augmenting it by a fixed increment of 0.00025. If the voltage value reach 0.3 without
satisfying the termination criterion, the algorithm exits the loop and returns False.
In such cases, auxiliary functions are invoked to address this situation. Typically,
the procedure entails a restart, as elucidated in the ensuing subsections.

16

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

Algorithm 1 Scanning Temperature

1: procedure ScanTemperature(ϵ=1000)
2: for i in np.arange(0, 0.3, 0.00025) do
3: SetDAC2(i)
4: , blue signal← orderedScopeTrace(self)
5: half trace← int(blue signal.shape[0]/2)
6: blue peak index← np.where(blue signal == blue signal.max)
7: blue peak index← blue peak index[0][0]
8: if half trace − ϵ < blue peak index < half trace +

ϵ and blue signal.max > 0.95 then
9: Return True

10: Return False

3.2 Lock Maintaining

After achieving lock, the subsequent challenge lies in the task of maintaining this
locked state while preserving the TEM00 mode. This section provides a compre-
hensive account of all the experiments and analyses undertaken in pursuit of this
particular objective.

It is important to note that the full scope trace duration is calculated as follows:
8, ns × 214 (which equals 16,384) multiplied by the decimation factor (256) results
in approximately 33,554,432 ns, or roughly 33.55 ms. Consequently, the frequency
is given by 16384× 109/33554432 = 488, 281.25 Hz.

3.3 Software Control for Lock Maintaining

One straightforward approach to reestablishing the lock when it is lost is to execute
Algorithm 1 each time the lock is disengaged. This procedure is elaborated upon in
Algorithm 2, and it functions as follows:

1. Initially, the Red Pitaya’s outputs are reset, and the fast input is configured
to produce a ramp signal by invoking the function RampPiezo, as described
in Algorithm 3. This function sets the ASG0 output of the Red Pitaya to a
ramp waveform with the specified frequency and IQ0 to a quadrature signal
in accordance with the input phase.

2. The ScanTemperature function is called, and if it returns True, indicating
that the correct mode has been identified, a 10-second waiting period ensues
to allow for more stable temperature conditions within the crystal and to center
the peak of the PDcav signal on the center of the ramp.

17

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

3. Subsequently, the cavity is locked using the Pound-Drever-Hall (PDH) tech-
nique.

4. At intervals of 10 seconds, the lock status is monitored by analyzing the voltage
level of max signal.

Algorithm 2 Automatic Relock Function

1: procedure AutoRelock
2: Reset
3: RampPiezo
4: if ScanTemperature(500) then
5: Sleep(10)
6: LockCavity
7: while True do
8: Sleep(10)
9: purple signal, blue signal← Scope

10: if Max(blue signal) < 0.95 then
11: Break
12: AutoRelock

Algorithm 3 Ramping the Piezo

1: procedure RampPiezo(phase=15)
2: Reset(self)
3: ScanPiezo(freq = 1/(8E − 9 ∗ (2 ∗ ∗14) ∗ 256))
4: setIQ0(phase = phase)

While this method may not maintain the lock but rather initiates a fresh search for
it, it can still be employed to conduct valuable analyses. The ensuing experiments
were executed consecutively to this end.

What is the Power Spectrum Density of the fast signal F? To compute the
PSD of F the function scipy.signal.welch(purple signal, fs, nperseg=len(purple signal)
//2) was used, where fs is the Hz value indicated above. The PSD of the average
of 10 PSD of traces taken in succession is depicted in the following image:

How long lock last? To test how it last the auto lock function was left run-
ning for a total time of 66804.48741364479 seconds (equivalent to 18h33m). Some
information were extrapolated:

• Number of lock events : 32

18

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

(a) Average loglog of F
(b) Average semilogy of fast signal
F

Figure 13: PSD of fast signal F

• Minimum lock duration: 10.086094617843628 seconds

• Maximum lock duration: 7437.1077709198 seconds (2h4m)

• Average lock duration: 2087.6402316763997 seconds (34m47s)

Average fast signal plot. Figure 14 shows the plot.

3.4 Reinforcement Learning & Temporal Difference Learn-
ing for Lock Maintaining

Reinforcement Learning (RL)[9] is a branch of machine learning that focuses on
training agents to make sequences of decisions in an environment to achieve specific
goals. Unlike supervised learning, where the model learns from labeled data, and
unsupervised learning, where the model identifies patterns in unlabeled data, RL
deals with decision-making in dynamic and uncertain settings. In RL, an agent
interacts with an environment, takes actions, and receives feedback in the form
of rewards or penalties based on its actions. The agent’s objective is to learn a
policy—a strategy for selecting actions—that maximizes its cumulative reward over
time. The whole process is summarized in

Temporal Difference (TD)[1] learning is a fundamental concept in reinforcement
learning, particularly in the context of model-free methods. TD learning algorithms
bridge the gap between Monte Carlo methods, which require full episode trajecto-
ries to estimate returns, and dynamic programming, which requires a model of the
environment. TD learning allows agents to learn and update their value estimates
and policies incrementally, making it highly suitable for online learning scenarios.
The key idea behind TD learning is to estimate the value of a state or state-action

19

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

Figure 14: Every single point represents the mean value of the scope trace took
every 10 seconds when the system was lock. Every red line indicates the start of a
new lock event, and the green line is the average of the overall voltage values. The
distances between each red line indicate how much the system was lock, in seconds,
by just multiplying the difference times 10. < F > is 0.33892209809867974.

Figure 15: Agent-Environment interaction in Reinforcement Learning.

pair by bootstrapping from the current estimate and incorporating the immediate
reward and the estimated value of the next state (or state-action pair). This pro-
cess of updating value estimates based on temporal differences between successive
estimates is what gives TD learning its name.

One of the most famous TD learning algorithms is Q-learning, which is used for
estimating the quality of taking a specific action in a particular state and is com-
monly applied in reinforcement learning problems involving discrete state and action
spaces. TD learning methods are highly efficient for real-time learning and are cru-
cial in scenarios where episodic or full trajectories are not available or practical to
use. In this research, Q-Learning[14] and Double Q-Learning[3] were exploited.

20

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

3.4.1 Q-Learning Control

Q-Learning[14] is an off-policy Temporal Difference (TD) algorithm used in Rein-
forcement Learning (RL) to find an optimal policy for an agent in an environment.
It is defined as:

Q(s, a)← Q(s, a) + α
(
Rt+1 + γmax

a
Q(St+1, a)−Q(s, a)

)
(3)

The learned action-value function, Q, directly approximates q∗, the optimal action-
value function, independent of the policy being followed. This dramatically simplifies
the analysis of the algorithm and enabled early convergence proofs. The policy still
has an effect in that it determines which state–action pairs are visited and updated.
However, all that is required for correct convergence is that all pairs continue to be
updated, e.g., making advantage of an epsilon-greedy strategy. The procedure is
described in Figure 16.

Figure 16: Q-Learning procedure.

Adapting the approach to our specific case necessitated the precise definition of our
states and actions. The voltage values obtained from the PDcav fall within the
range of -1 to +1 volts. To facilitate the utilization of Q-Learning, we discretized
this voltage range into intervals of 0.1 volts, yielding a total of 21 distinct states.
Similarly, the temperature underwent a similar treatment, with a set of actions
defined for the slow analog input. These actions induced temperature changes in
increments ranging from -0.001 to 0.001, with a step size of 0.0005, resulting in a
total of 5 actions. In addition to defining states and actions, other crucial parameters
were established. The learning rate, denoted as α, was set to 0.4, while the discount
factor, represented as γ, was assigned a value of 0.99. To balance exploration and
exploitation, an ϵ-greedy policy was adopted. Initially, ϵ was set to 0.7 to favor
exploration, but after 1000 episodes, it was adjusted to 0.3.

For a comprehensive understanding of the procedure, Algorithm 4 provides a detailed
overview. Essentially, it incorporates the Q-Learning technique into Algorithm 2.

The test parameter is a Boolean that regularize the agent’s configuration parame-
ters to be exclusively greedy.

21

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

Following the training of Q-Learning with a total of 5000 episodes, the resultant
Q-matrix was subsequently utilized and subjected to comprehensive analysis. This
analysis aimed to facilitate a comparative evaluation with the software control strat-
egy. Specifically, it involved an examination of the average performance of the rapid
signal as well as the duration of the prevailing lock state. The intent of this analy-
sis was to discern and assess any discernible enhancements or improvements in the
system’s behavior.

How long lock last? To compare this new strategy to the software control so-
lution, we tested it setting the number of episodes, i.e., the number of lock-unlock
events to 32. However, do to time and to a problem to the power cable the sys-
tem stop at episode 4 without completing it. The total run was 210746.8703019619
seconds, equivalent to 2d6h32m. Summarizing:

• Number of lock events : 4 (last episode not concluded)

• Minimum lock duration: 269.89439964294434 (4m29s)

• Maximum lock duration: 195901 seconds (2d6h25m)

• Average lock duration: 52686.717575490475 seconds (11h51m)

Even though the first 3 episodes perform poorly, perhaps due to have just turned
on the laser, much better results were obtained compered to the software control
strategy. The Q-Learning agent proved to be able to maintain lock even after days.

Average fast signal plot. The figure presented in Figure 17 illustrates a segment
of the fast signal plot obtained during the training phase of the Q-Learning algo-
rithm. Throughout the training process, a subset of actions is executed randomly,
resulting in the signal deviating from its mean value, which is approximately 0.297V.
This randomness in action selection often causes the signal to lose lock.

In contrast, Figure 18 showcases the fast signal plot during the testing phase, where
the agent exclusively opts for greedy actions. The figure provides a closer exam-
ination of the signal’s behavior. Notably, the signal exhibits a more concentrated
pattern around a mean value of approximately 0.32V during this phase. An interest-
ing observation is the absence of actions that increase the temperature by 0.0025V,
indicating that the Q-learning agent likely found such actions to be ineffective. A
detailed examination in the zoomed-in section of the figure reveals that whenever
the signal deviates, corrective actions are promptly taken to steer it back toward the
mean, leading to incremental increases or decreases as needed.

22

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

Figure 17: Fast signal during Q-Learning training. The black lines indicate lock
events, and the action taken by the agent is highlighted by a specific color at every
time step.

Figure 18: Fast signal during Q-Learning testing.

Assessment of the Q-Matrix The Q-matrix, which is derived from the train-
ing of the learning agent, is visually represented using a heatmap as illustrated in
Figure 19. The matrix provides valuable insights into the agent’s decision-making
process. It becomes apparent that certain voltage ranges are never encountered, and
the Q-matrix reveals which actions the agent deems most crucial for each voltage
state. This determination is made by selecting the action associated with the high-
est value for a given state, such as a temperature range. Notably, there is relatively
little disparity among the various action-state pairs. This uniformity in Q-values
may be attributed to the way rewards are defined; specifically, they are binary, with
a value of 1 indicating successful lock maintenance and 0 indicating loss, without
regard for the episode’s temporal progression. The concept of incremental rewards,
which accounts for episode progression, is introduced in subsubsection 3.4.2.

23

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

Figure 19: Q-matrix heatmap.

Impact of Actions on the Fast Signal In order to comprehensively ascertain
the influence of agent-initiated changes in temperature on the fast signal, we have
developed a correlation matrix, as detailed in Table 3. This matrix facilitates the
establishment of a connection between the agent’s actions and the subsequent state
of the system, observed 0.1 seconds later.

I define stability as a state in which the signal undergoes minimal alteration, typi-
cally less than 0.03V. This threshold corresponds roughly to one-fifth of the standard
deviation of the fast signal, which is calculated as 0.1624. Analyzing the specific im-
pact of individual actions reveals intriguing insights. For instance, interpreting the
effect of action -0.005 in isolation can be challenging; however, when juxtaposed
with action -0.0025, it becomes apparent that it either sustains or slightly elevates
signal stability. Conversely, action -0.0025 carries a higher likelihood of inducing
a voltage increase in the photodetector signal downstream of the cavity. Notably,
action 0 appears to consistently preserve signal stability, but an interesting obser-
vation arises when the temperature remains unaltered—under such circumstances,
the signal generally tends to increase. Action 0.0025 is conspicuously absent from
the agent’s choices, implying its limited impact. In contrast, action 0.005 exerts a
substantial influence by significantly reducing signal values. Remarkably, it stands
as the most frequently employed action, indicative of a consistent trend where the
signal typically inclines towards increase when subjected to action 0, necessitating
the application of action 0.005 to maintain system stability.

24

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

Table 3: Action and fast signal relation.

Decrease Stable Increase
-0.005 13165 16440 16432
-0.0025 2689 15555 27850

0 335 27309 19343
0.0025 0 0 0
0.005 65219 2973 1024

Correlation analysis between temperature and action taken. In order to
investigate potential correlations between room temperature and the actions under-
taken by the agent, we employed statistical analysis techniques. Specifically, we
calculated both the Pearson correlation coefficient and the distance correlation to
assess the presence of linear and non-linear correlations, respectively.

The Pearson correlation coefficient [4, 8] yielded a value of 0.0037, suggesting a
lack of linear correlation between temperature and actions taken. Furthermore, the
associated p-value of 0.08 indicated that this observed correlation, though small,
lacked statistical significance. To explore non-linear relationships, we also computed
the distance correlation[10, 11, 12], which returned a value of 0.00489. This result
implies that the signal and the actions taken are statistically independent of each
other.

This finding holds significant implications as it demonstrates that temperature does
not exert a direct influence on the rapidity of the signal, contrary to initial assump-
tions.

3.4.2 Double Q-Learning Control

Double Q-Learning[3] is an analogous to Q-Learning, but it divides the time steps
in two, e.g., by flipping a coin on each step). If the coin comes up heads, the update
is:

Q1(St, At)← Q1(St, At)+α[Rt+1+γQ2(St+1, argmax
a

Q1(St+1, a))−Q1(St, At)] (4)

If the coin comes up tails, then the same update is done with Q1 and Q2 switched,
so that Q2 is updated. The procedure is described in Figure 20.

Double Q-Learning offers several notable advantages over its precursor, Q-Learning.
One paramount benefit is its capacity to mitigate the overestimation bias inherent
in Q-Learning. By maintaining two distinct Q-value functions, Double Q-Learning
ameliorates the issue of overly optimistic action-value estimates that can lead to

25

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

Figure 20: Q-Learning procedure.

suboptimal policies. This reduction in overestimation bias not only enhances policy
evaluation but also engenders a more robust and stable learning process, particu-
larly in environments characterized by noisy rewards or uncertainty. Furthermore,
the algorithm’s improved accuracy in estimating action values facilitates more effec-
tive exploration strategies, enabling agents to discover optimal policies with greater
efficiency. Thus, these advantages collectively position Double Q-Learning as a com-
pelling choice for addressing the limitations of traditional Q-Learning and enhancing
the efficiency and effectiveness of reinforcement learning agents with only the cost
of doubling the memory requirements, but without increasing the amount of com-
putation per step.

Algorithm 5 provides a detailed overview. Essentially, it only adds the handling of
the two Q-matrices.

The test parameter is a Boolean that regularize the agent’s configuration parame-
ters to be exclusively greedy. The reward was changed in this case to underline even
more the importance to maintain lock longer, although it is not clear if this provides
better performance or not.

Unfortunately, do to time and the good performance of the Q-Learning the training
and the test have not been performed yet, however the code is present as documented
in subsection 4.3.

4 Python Code

Within this section, a comprehensive documentation has been meticulously prepared
for all code elements.

26

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

4.1 RedPitayaController Class

To facilitate streamlined control of the RedPitaya device, a Python class has been
meticulously developed. In this following subsection, a comprehensive exposition of
all available functions is presented and discussed in order to elucidate their func-
tionality.

4.1.1 Constructor

The constructor connects to the Red Pitaya using pyprl, creating the redpitaya

object.

class RedPitayaController(object):

def init (self, hostname: str, user: str = ’root’,

password: str = ’root’, config: str = ’fermi’,

gui: bool = False):

try:

p = Pyrpl(hostname=hostname, user=user,

password=password , config=config, gui=gui)

self.redpitaya = p.rp

except Exception as e:

print(e)

4.1.2 Setting and Resetting Red Pitaya’s Outputs

A series of functions has been diligently crafted to exercise command and control
over the Red Pitaya’s output channels. These functions have been tailored to admin-
ister precise manipulation of ASG0, ASG1, IQ0, DAC2, and PID0. Furthermore, a
dedicated function has been incorporated into the class to facilitate a comprehensive
reset operation, enabling the restoration of these output channels to their default
states as required by the experimental protocols under consideration.

def reset(self) −> None:

#Turn off arbitrary signal generator channel 0
self. setAsg0(output direct=’off’, amp=0, offset=0)

#Turn off arbitrary signal generator channel 1
self. setAsg1(output direct=’off’, amp=0, offset=0)

#Turn off I+Q quadrature demodulation/modulation modules
self.redpitaya.iq0.output = ’off’

self. setIQ0(output direct=’off’)

#Turn off PID module 0
self. setPid0(0, 0, 0, 0, ’off’)

27

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

#Turn off dac2
self.setdac2(0)

def setAsg0(self, waveform: str = ’halframp’, output direct: str = ’out1’,

amp: float = 0.5, offset: float = 0.5, freq: float = 1e2) −> None:

self.redpitaya.asg0.setup(waveform=waveform, output direct=output direct ,

trigger source=’immediately’, offset=offset,

amplitude=amp, frequency=freq)

def setAsg1(self, waveform: str = ’halframp’, output direct: str = ’out2’,

amp: float = 0.8, offset: float = 0.0, freq: float = 25e6) −> None:

self.redpitaya.asg1.setup(waveform=waveform, output direct=output direct ,

trigger source=’immediately’, offset=offset,

amplitude=amp, frequency=freq)

def setIQ0(self, frequency: float = 25e6, bandwidth: list = [2e6, 2e6],

gain: float = 0.5, phase: int = 0, acbandwidth: float = 5e6,

amplitude: float = 1., input: str = ’in1’, output direct: str = ’out2’,

output signal: str = ’quadrature’, quadrature factor: int = 1) −> None:

self.redpitaya.iq0.setup(frequency=frequency , bandwidth=bandwidth , gain=gain,

phase=phase, acbandwidth=acbandwidth , amplitude=amplitude ,

input=input, output direct=output direct ,

output signal=output signal ,

quadrature factor=quadrature factor)

def setdac2(self, voltage: float = 0.) −> None:

self.redpitaya.ams.dac2 = voltage # pin 17 output 0

def setPid0(self, ival: float = 0, integrator: float = 1e3,

proportional: float = 0, differantiator: float = 0, input=’iq0’,

output direct: str = ’out1’) −> None:

Clear integrator
self.redpitaya.pid0.ival = ival

Proportinal
self.redpitaya.pid0.p = proportional

Integrator
self.redpitaya.pid0.i = integrator

differentiator
self.redpitaya.pid0.d = differantiator

input or output

28

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

self.redpitaya.pid0.input = input

self.redpitaya.pid0.output direct = output direct

4.1.3 Reading the Scope

The Red Pitaya is equipped with an internal oscilloscope, which serves as a valuable
tool for conducting the analyses as described earlier. To harness this functionality
effectively, we have developed two distinct functions: the first function is designed to
acquire data directly from the oscilloscope, while the second function also leverages
the scope functions but additionally restructures the acquired data, thereby aligning
the ramp signal into a linear trajectory.

def scope(self, input1=’out1’, input2=’in2’, hysteresis=0.01, trigger source=’immediately’):

self.redpitaya.scope.decimation = 256

self.redpitaya.scope.input1 = input1

Scope’s second input
self.redpitaya.scope.input2 = input2

self.redpitaya.scope.threshold = self.redpitaya.asg0.offset +

self.redpitaya.asg0.amplitude / 2

Trigger Hysteresis
self.redpitaya.scope.hysteresis = hysteresis

Trigger Time Delay
self.redpitaya.scope.trigger delay = 0

#Take a Scope Trace
self.redpitaya.scope.trigger source = trigger source

return self.redpitaya.scope.single()

def orderedScopeTrace(self, ordered=False):

purple signal , blue signal = self.scope()

find wave peak
purple signal peak index = np.where(purple signal == purple signal.max())[0][0]

first position = purple signal peak index + 1

purple signal = np.concatenate(

(purple signal[first position:], purple signal[:first position])

)

blue signal = np.concatenate(

(blue signal[first position:], blue signal[:first position])

)

return purple signal , blue signal

29

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

4.1.4 Temperature Scanning

The following function is the implementation of Algorithm 1.

def scan temperature(self, epsilon=1000) −> bool:

for i in np.arange(0, 0.3, 0.00025):

set temperature
self.setdac2(i)

take scope
, blue signal = self. orderedScopeTrace()

half scope trace = int(blue signal.shape[0]/2)

blue signal peak index = np.where(blue signal == blue signal.max())[0][0]

if half scope trace − epsilon < blue signal peak index <
half scope trace + epsilon and blue signal.max() > .95:

print(i)

return True

return False

4.1.5 Piezo Handling

Two functions are implemented to ramp the Piezo, using previously defined func-
tions.

def scanPiezo(self, asg: bool = True, output direct: str = ’out1’, amp: float = 0.5,

offset: float = 0.5, freq: float = 1e2) −> None:

if asg:

self. setAsg0(waveform=’halframp’, output direct=output direct ,

amp=amp, offset=offset, freq=freq)

else:

self. setAsg1(waveform=’halframp’, output direct=output direct ,

amp=amp, offset=offset, freq=freq)

def ramp piezo(self, phase=15):

self.reset()

self.scanPiezo(freq=1 / (8E−9 ∗ (2 ∗∗ 14) ∗ 256))
self. setIQ0(phase=phase)

4.1.6 PHD Lock

To perform PHD lock the following function was implemented inside the class:

30

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

def lockCavity(self, phase=20):

print("Scan Piezo")

self.scanPiezo(freq=1 / (8E−9 ∗ (2 ∗∗ 14) ∗ 256))
print("Run on Modulation")

self. setIQ0(phase=phase)

print("Take a scope trace")

scope trace = self. scopeTrace()

print("Done taking scope trace")

np.save(’scope trace.npy’, scope trace)

print("Saved scope trace")

ch1, ch2 = scope trace

#Guess Initial Parameters
print("Curve fit")

offs = np.mean(ch2)

gamma = (np.max(ch1) − np.min(ch1)) / 10

x0 = (np.max(ch1) − np.min(ch1)) / 2

amp = (np.max(ch2) − np.mean(ch2)) ∗ (x0 ∗∗ 3)
Curve Fit
poptLine , pcovLine = scipy.optimize.curve fit(lPrime, ch1, ch2,

p0=[amp, offs, gamma, x0])

fit = lPrime(ch1, poptLine[0], poptLine[1], poptLine[2], poptLine[3])

Plot Measured Data and Curve Fit
plt.figure(1)

plt.title("PDH Error Signal")

plt.xlabel("PZT Drive Voltage (V)")

plt.ylabel("Error Signal (V)")

plt.grid(True)

plt.plot(ch1, ch2)

plt.plot(ch1, fit)

print("Go back to resonance")

#Go to resonance (CONSTANTPIEZO)
self. setAsg0(waveform=’dc’, output direct=’out1’, offset=poptLine[3])

print("Close the feedback loop")

Close the Feedback Loop
Set PID gains and corner frequencies
Set Point
self.redpitaya.pid0.setpoint = poptLine[1]

self. setPid0()

31

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

4.1.7 Maintain Lock: Software Control

Algorithm 2 is implemented in the following code snippet:

def auto relock(self):

self.reset()

self.ramp piezo()

if self.scan temperature(1000):

time.sleep(10)

try:

self.lockCavity()

catch:

self.auto relock()

starting time = time.time()

print(f’Locked at: {starting time}’)
while True:

time.sleep(10)

print(f’Seconds after start: {time.time() − starting time}’)
purple signal , blue signal = self.scope()

print(f’purple (fast) signal mean: {purple signal.mean()}’)
print(f’blue signal mean: {blue signal.mean()}’)
if blue signal.max() < 0.95:

end time = time.time()

print(f’Lost lock at: {end time}. Took {end time−starting time}’)
break

self.auto relock()

A try-catch statement was added to handle cases in which scipy.optimize.curve fit
fails.

4.2 RedPitayaQLearning Class

To integrate Q-Learning with our Red Pitaya a specific Python class was developed.

4.2.1 Constructor

In the constructor, all the important parameters needed to handle the lock and Q-
Learning are set up. Also functionality for reading room temperature using the u3

library are included. However, it’s important to note that the temperature reading
doesn’t impact the Q-Learning algorithm, but it is only used for external analysis.

32

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

def init (self, hostname: str, user: str = ’root’, password: str = ’root’,

config: str = ’fermi’, gui: bool = False, load=False, test=False):

self.rpc = RedPitayaController(hostname, user, password, config, gui)

states
self.voltage range = np.arange(−1, 1.1, 0.1)
self.num states = len(self.voltage range) # 21
actions
self.action range = np.arange(−.001, .0015, .0005)
self.num actions = len(self.action range) # 5
#SARSA parameters
self.learning rate = 0.4

self.discount factor = 0.99

self.epsilon = 0.7

self.num episodes = 5000

self.tmp35 = u3.U3()

self.test = test

if self.test:

self.epsilon = 0

#Q−values
if load:

self.Q = np.load(’q qlearning.npy’)

else:

self.Q = np.zeros((self.num states , self.num actions))

4.2.2 Utils

Here some utility functions:

def get state index(self, temperature):

return np.argmin(np.abs(self.voltage range − temperature))

def get action index(self, action):

return np.argmin(np.abs(self.action range − action))

4.2.3 Learning

Q-Learning is executed using the following functions, which integrate the auto relock()

functionality from the RedPitayaController into the Q-Learning analysis.

33

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

def qlearning(self, episode: int = 0):

while episode < self.num episodes:

print(f’EPISODE {episode}’)
if episode == 1000 and not self.test:

self.epsilon = 0.3

self.rpc.reset()

self.rpc.ramp piezo()

if self.rpc.scan temperature(500):

time.sleep(10)

try:

self.rpc.lockCavity()

except:

continue

system unlock = False

print(f’\tLocked at: {time.time()}’)
print(f’\tInitial temperature voltage: {self.rpc.redpitaya.ams.dac2}V’)
purple signal , = self.rpc.scope()

print(f’\tFast signal mean: {purple signal.max()}’)
state = self. get state index(round to nearest 0 1(purple signal.max()))

while True:

time.sleep(1)

#Choose action using epsilon−greedy policy
if np.random.rand() < self.epsilon and not self.test:

action = np.random.choice(self.num actions)

else:

action = np.argmax(self.Q[state, :])

print(f’\tAction index: {action}’)
self.rpc.setdac2(self.rpc.redpitaya.ams.dac2 + self.action range[action])

print(f’\tTemperature voltage: {self.rpc.redpitaya.ams.dac2}V’)
time.sleep(0.1)

#Get the next state , reward, and system unlock
purple signal , blue signal = self.rpc.scope()

print(f’\tFast signal mean: {purple signal.max()}’)
if blue signal.max() < 0.95:

print(f’\tLost lock at: {time.time()}’)
system unlock = True

next state = self. get state index(round to nearest 0 1(purple signal.max()))

reward = 1 if not system unlock else 0

print(f’\tState index: {next state}’)
ain0bits , = self.tmp35.getFeedback(u3.AIN(0))

34

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

ain0Value = self.tmp35.binaryToCalibratedAnalogVoltage(ain0bits,

isLowVoltage=False,

channelNumber=0)

ain2bits , = self.tmp35.getFeedback(u3.AIN(2))

ain2Value = self.tmp35.binaryToCalibratedAnalogVoltage(ain2bits,

isLowVoltage=False,

channelNumber=0)

print(f’\tTMP35 AIN0: {ain0Value}’)
print(f’\tTMP35 AIN2: {ain2Value}’)
Update Q−values
if not self.test:

max next q = np.max(self.Q[next state , :])

self.Q[state, action] = (self.Q[state, action] +

self.learning rate ∗
(reward +

self.discount factor ∗ max next q
− self.Q[state, action]))

state = next state

if system unlock:

if not self.test:

np.save(’q qlearning.npy’, self.Q)

episode += 1

break

4.2.4 General Utils

Here some utility functions:

def get state index(self, temperature):

return np.argmin(np.abs(self.voltage range − temperature))

def get action index(self, action):

return np.argmin(np.abs(self.action range − action))

4.3 RedPitayaDoubleQLearning Class

To integrate Double Q-Learning with our Red Pitaya a specific Python class was
developed. (The code is very similar to the RedPitayaQLearning Class).

35

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

4.3.1 Constructor

In the constructor, all the important parameters needed to handle the lock and
Double Q-Learning are set up.

def init (self, hostname: str, user: str = ’root’, password: str = ’root’,

config: str = ’fermi’, gui: bool = False, learning rate=0.4,

discout factor=0.99, epsilon=0.7, num episodes=5000,

load=False, test=False):

self.rpc = RedPitayaController(hostname, user, password, config, gui)

states
self.voltage range = np.arange(−1, 1.05, 0.1)
self.num states = len(self.voltage range) # 21
actions
self.action range = np.arange(−.001, .0015, .0005)
self.num actions = len(self.action range) # 5
#SARSA parameters
self.learning rate = learning rate

self.discount factor = discout factor

self.epsilon = epsilon

self.num episodes = num episodes

self.tmp35 = u3.U3()

self.test = test

if self.test:

self.epsilon = 0

Initialize Q−values for two Q−functions
if load:

self.Q1 = np.load(’q1 dqlearning.npy’)

self.Q2 = np.load(’q2 dqlearning.npy’)

else:

self.Q1 = np.zeros((self.num states , self.num actions))

self.Q2 = np.zeros((self.num states , self.num actions))

4.3.2 Utils

Here some utility functions:

def get state index(self, temperature):

return np.argmin(np.abs(self.voltage range − temperature))

36

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

def get action index(self, action):

return np.argmin(np.abs(self.action range − action))

4.3.3 Learning

Doubling Q-Learning is executed using the following functions, which extends the
previously presented Q-Learning function.

def doubleqlearning(self, episode: int = 0):

while episode < self.num episodes:

print(f’EPISODE {episode}’)
if episode == 1000 and not self.test:

self.epsilon = 0.3

self.rpc.reset()

self.rpc.ramp piezo()

if self.rpc.scan temperature(500):

time.sleep(10)

try:

self.rpc.lockCavity()

except:

continue

system unlock = False

print(f’\tLocked at: {time.time()}’)
print(f’\tInitial temperature voltage: {self.rpc.redpitaya.ams.dac2}V’)
purple signal , = self.rpc.scope()

print(f’\tFast signal mean: {purple signal.max()}’)
state = self. get state index(round to nearest 0 1(purple signal.max()))

reward = 0

while True:

time.sleep(1)

#Choose action using epsilon−greedy policy
if np.random.rand() < self.epsilon and not self.test:

action = np.random.choice(self.num actions)

if np.random.rand() < 0.5:

q1 selected = True

else:

q1 selected = False

else:

if np.random.rand() < 0.5:

action = np.argmax(self.Q1[state, :])

q1 selected = True

37

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

else:

action = np.argmax(self.Q2[state, :])

q1 selected = False

print(f’\tAction index: {action}’)
self.rpc.setdac2(self.rpc.redpitaya.ams.dac2 + self.action range[action])

print(f’\tTemperature voltage: {self.rpc.redpitaya.ams.dac2}V’)
time.sleep(0.1)

#Get the next state , reward, and system unlock
purple signal , blue signal = self.rpc.scope()

print(f’\tFast signal mean: {purple signal.max()}’)
if blue signal.max() < 0.95:

print(f’\tLost lock at: {time.time()}’)
system unlock = True

next state = self. get state index(round to nearest 0 1(purple signal.max()))

reward += 1 if not system unlock else 0

print(f’\tState index: {next state}’)
Temperature
ain0bits , = self.tmp35.getFeedback(u3.AIN(0))

ain0Value = self.tmp35.binaryToCalibratedAnalogVoltage(ain0bits,

isLowVoltage=False,

channelNumber=0)

ain2bits , = self.tmp35.getFeedback(u3.AIN(2))

ain2Value = self.tmp35.binaryToCalibratedAnalogVoltage(ain2bits,

isLowVoltage=False,

channelNumber=0)

print(f’\tTMP35 AIN0: {ain0Value}’)
print(f’\tTMP35 AIN2: {ain2Value}’)

Update Q−values
if not self.test:

if q1 selected:

max next q = self.Q1[next state , np.argmax(self.Q2[next state , :])]

self.Q1[state, action] = (self.Q1[state, action] +

self.learning rate ∗
(reward

+ self.discount factor ∗ max next q
− self.Q1[state, action]))

else:

max next q = self.Q2[next state , np.argmax(self.Q1[next state , :])]

self.Q2[state, action] = (self.Q2[state, action] +

38

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

self.learning rate ∗
(reward

+ self.discount factor ∗ max next q
− self.Q2[state, action]))

state = next state

if system unlock:

if not self.test:

np.save(’q1 dqlearning.npy’, self.Q1)

np.save(’q2 dqlearning.npy’, self.Q2)

episode += 1

break

5 Conclusion

Over the course of two months, I acquired a comprehensive understanding of the
methodologies involved in controlling the Red Pitaya. My knowledge extended to
the seamless integration of this system with other components, enabling the acquisi-
tion of signals essential for executing precision operations such as laser stabilization
within the TEM00 Gaussian mode. One notable achievement was the successful
implementation of a Q-Learning agent, which markedly enhanced the system’s lock
maintenance capabilities, resulting in a significantly reduced occurrence of unlocking
events. Nevertheless, it is important to note that the evaluation of the Q-learning
algorithm remains incomplete. To rectify this, I plan to conclude the testing phase
in the forthcoming weeks to ensure a fair comparison between the Q-learning agent
and the conventional software-controlled solution. It is worth mentioning that the
advantages of introducing the Q-learning agent are already discernible.

It is imperative to acknowledge that the utilization of Q-learning necessitates the
discretization of both actions and states, which can potentially impose limitations.
A more precise degree of control could be achieved by considering these parameters
in their continuous form. To pursue this avenue, alternative reinforcement learning
techniques can be explored to approximate the Q-matrix and facilitate a continuous
approach. One promising solution in this regard is the Deep Deterministic Policy
Gradient (DDPG) method, as described in works by Lillicrap et al. (2019)[6] and
Silver et al. (2014)[7]. DDPG leverages the strengths of deep neural networks and
policy gradients to effectively address problems with continuous action spaces. The
DDPG framework consists of two integral components:

39

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

References

[1] Richard Bellman. Dynamic programming and stochastic control processes. In-
formation and control, 1(3):228–239, 1958.

[2] Eric D Black. An introduction to pound–drever–hall laser frequency stabiliza-
tion. American journal of physics, 69(1):79–87, 2001.

[3] Hado Hasselt. Double q-learning. Advances in neural information processing
systems, 23, 2010.

[4] Charles J. Kowalski. On the effects of non-normality on the distribution of the
sample product-moment correlation coefficient. Journal of the Royal Statistical
Society. Series C (Applied Statistics), 21(1):1–12, 1972.

[5] Dongjun Li, Vincent S. H. Lee, Yanbei Chen, and Kathryn M. Zurek. Inter-
ferometer response to geontropic fluctuations. Phys. Rev. D, 107:024002, Jan
2023.

[6] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning, 2019.

[7] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. Deterministic policy gradient algorithms. In International
conference on machine learning, pages 387–395. Pmlr, 2014.

[8] Student. Probable error of a correlation coefficient. Biometrika, 6(2/3):302–310,
1908.

[9] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018.

[10] Gabor J. Szekely and Maria L. Rizzo. Partial distance correlation with methods
for dissimilarities, 2014.

[11] Gá bor J. Székely, Maria L. Rizzo, and Nail K. Bakirov. Measuring and testing
dependence by correlation of distances. The Annals of Statistics, 35(6), dec
2007.

[12] Gábor J. Székely and Maria L. Rizzo. Energy statistics: A class of statistics
based on distances. Journal of Statistical Planning and Inference, 143(8):1249–
1272, 2013.

40

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

[13] Erik P. Verlinde and Kathryn M. Zurek. Observational signatures of quantum
gravity in interferometers. Physics Letters B, 822:136663, 2021.

[14] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,
8:279–292, 1992.

41

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

Algorithm 4 Q-Learning

1: procedure QLearning(episode)
2: while episode < MAX EPISODE do
3: if episode == 1000 and not test then
4: ϵ = .3
5: Reset
6: RampPiezo
7: if ScanTemperature(500) then
8: Sleep(10)
9: LockCavity

10: systemUnlock ← False
11: purple signal, ← Scope
12: state← StateIndex(purple signal)
13: while do
14: Sleep(1)
15: if Rand < ϵ and not test then
16: action← RandomChoise(Actions)
17: else
18: action← ArgMax(Q[state, :])

19: SetDAC2(currentDAC2 + action)
20: Sleep(0.1)
21: purple signal, blue signal← Scope
22: if Max(blue signal) < 0.95 then:
23: systemUnlock ← True

24: nextState← StateIndex(purple signal)
25: if systemUnlock then
26: reward← 1
27: else
28: reward← 0
29: if not test then
30: maxNextQ←Max(Q[nextState, :])
31: update Q

32: state← nextState
33: if systemUnlock then
34: break

42

Controlling Optical Cavities using Machine Learning Edoardo Fazzari

Algorithm 5 Q-Learning

1: procedure QLearning(episode)
2: while episode < MAX EPISODE do
3: if episode == 1000 and not test then
4: ϵ = .3
5: Reset
6: RampPiezo
7: if ScanTemperature(500) then
8: Sleep(10)
9: LockCavity

10: systemUnlock ← False
11: purple signal, ← Scope
12: state← StateIndex(purple signal)
13: reward← 0
14: while do
15: Sleep(1)
16: if Rand < ϵ and not test then
17: action← RandomChoise(Actions)
18: if Rand < 0.5 then
19: q1 selected← True
20: else
21: q1 selected← False
22: else
23: if Rand < 0.5 then
24: action← ArgMax(Q1[state, :])
25: q1 selected← True
26: else
27: action← ArgMax(Q2[state, :])
28: q1 selected← False
29: SetDAC2(currentDAC2 + action)
30: Sleep(0.1)
31: purple signal, blue signal← Scope
32: if Max(blue signal) < 0.95 then:
33: systemUnlock ← True
34: nextState← StateIndex(purple signal)
35: if systemUnlock then
36: reward← reward+ 1
37: if not test then
38: if q1 selected then
39: maxNextQ1← Q1[nextState,Argmax(Q2[nextState, :])]
40: update Q1
41: else
42: maxNextQ2← Q2[nextState,Argmax(Q1[nextState, :])]
43: update Q2
44: state← nextState
45: if systemUnlock then
46: break

43

	Introduction
	Materials and Setup
	Mephisto Laser
	Red Pitaya
	Optics Layout
	Red Pitaya's Connections
	Red Pitaya's Radio Frequency (RF) Inputs
	Red Pitaya's Radio Frequency (RF) Outputs
	Red Pitaya's Analog Outputs

	Oscilloscope's Connections
	Reading Temperature
	TMP35 Temperature Sensor
	LabJack U3-HV

	Experiments & Results
	Initial Temperature
	Lock Maintaining
	Software Control for Lock Maintaining
	Reinforcement Learning & Temporal Difference Learning for Lock Maintaining
	Q-Learning Control
	Double Q-Learning Control

	Python Code
	RedPitayaController Class
	Constructor
	Setting and Resetting Red Pitaya's Outputs
	Reading the Scope
	Temperature Scanning
	Piezo Handling
	PHD Lock
	Maintain Lock: Software Control

	RedPitayaQLearning Class
	Constructor
	Utils
	Learning
	General Utils

	RedPitayaDoubleQLearning Class
	Constructor
	Utils
	Learning

	Conclusion

