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Abstract

This report documents the work I conducted during my internship as part of the Italian Summer
Students program at the Fermilab National Accelerator Laboratory (FNAL). Throughout my

internship, I was stationed in the Technical Division within the Fermilab laboratory, where I was
under the guidance of Emanuela Barzi and co-supervised by Reed Teyber from the Lawrence

Berkeley National Laboratory (LBNL).
The aim of the project is the study and characterization of quench antenna signals in order gain

understanding on the mechanical and electromagnetic phenomena happening inside
superconductive magnets. The results presented here identify some potential areas of
investigation and potential directions for improving the construction of magnetic

superconductors, particularly within the framework of the CCT subscale program at LBNL.
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Chapter 1

Superconducting Magnets

In the last decades, superconducting magnets played an important role in advancing experimental
sciences and engineering [15]. They find a particularly important application in modern high energy
physics (HEP) research [3] as they are a key element in circular accelerators, where the accessible
scale of investigation strongly depends on increasing the magnetic bending of the particle beams.

There are different reasons behind the choice of using superconducting magnets instead of
their classical counterparts firstly they conduct high electrical current density with zero resistance.
This allows magnets to produce substantially higher magnetic field strengths while avoiding the
significant energy losses associated with standard electromagnets. They are also more cost-effective
and smaller in size than their traditional counterparts.

Magnets are deployed at various points within the accelerator: they are used to guide and
collimate the beam on a quasi-circular orbit, to transfer beams between accelerator rings in so-
called transfer lines, to direct or separate beams for the accelerating radio-frequency cavities, and
to focus beams for collision at the interaction points where the experiments reside. Due to their
various applications, the magnet system of an accelerator is composed of a number of different
magnets, mainly dipoles and quadrupoles. [16]

Despite the various positive aspects of using superconductors within magnets, there are also
some drawbacks, primarily due to quenching. To enhance the performance of magnets and expand
their operational range in the United States, an important research and development program,
the US Magnet Development Program (US-MDP), has been established. This work is focused on
a model of a canted-cosine-theta (CCT) superconducting magnet currently under study at LBNL
[13], [2].

1.1 Superconductive materials

Superconductive materials are materials that, under particular conditions of current density J ,
temperature T , and magnetic field B, can reach a zero-resistance conductive state. The supercon-
ductive state is delimited by a critical surface in the phase space, defined by the critical values
of the same three quantities, JC , TC , and BC . The values of these critical surfaces are highly
dependent on the mechanical and electromagnetic properties of the materials. In Figure 1.1, we
illustrate the critical surfaces of two widely utilized superconducting technology alloys: namely,
Niobium-Tin and Niobium-Titanium.

When a superconductor transitions from a state below the critical surface to one above it, it
experiences a phase change, converting it into a typical resistive conductive state. This transfor-
mation poses a potential hazard in the context of superconducting magnets.

1.2 Quench

The term quench indicates the sudden and irreversible transition of a portion of the conductor to
a standard resistive state inside a superconducting magnet. Quenching phenomena can be caused
by both electromagnetic and mechanical events that happen inside the magnets. For example,
quenching phenomena can be due to mechanical events such as epoxy cracks and fractures, de-
bonding, friction, and motion at layer-to-layer and cable-in-groove interfaces. or electromagnetic
phenomena such as current redistributions. One of the goals of current research is to identify
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1.2. QUENCH 1. Superconducting Magnets

Figure 1.1: Source: [8]. Representation of the critical surfaces for a Nb3Sn and NbTi alloy in the
phase space.

differences in data of differently originated events in order to improve intervention and develop
higher-performance magnets.

1.2.1 Magnets training

Before reaching their working conditions, namely the magnet field, current density, and temper-
ature the magnet was designed for, magnets undergo a training phase. During the training, the
current density inside the superconductor is progressively and slowly increased until quenching
occurs (current ramp). At this point, the Quench Protection System activates in order to dissipate
the energy and prevent irreversible damage to the magnets.
Magnets undergo various training cycles, commonly known as thermal cycles, during which the
magnet’s response is studied, and measurements are taken accordingly. Each thermal cycle consists
of multiple current ramps, with each ramp halting upon the occurrence of a quenching event.
Furthermore, between different thermal cycles, it is possible to identify issues in the magnet’s
mechanical or electronic components.

1.2.2 Quench antenna

Quench antennas or QAs, are arrays of pickup coils designed to detect changes in magnetic flux.
They consist of a printed-circuit-board (PCB) antenna integrated into the Nb3Sn superconducting
magnet’s coil structure. Due to its close proximity to the magnet, this antenna offers enhanced
sensitivity to current redistribution, strand motion, and cable motion.

Quench Antennas serve a dual purpose by identifying and pinpointing the location of quenches
in superconducting systems. These antennas exhibit sensitivity not only to dynamic cable events,
such as strand slip-stick motion but also to stationary current redistribution, which may or may
not be preceded by a mechanical disturbance. Figure 1.2 shows QAs positioned in the magnet.

Each QA measures the change in voltage according to Faraday-Neumann-Lenz’s low as

V =

n∑
i=1

d

dt

( ∫
BdAi

)
; (1.1)

where V represents the voltage variation measured by the antenna, the index n is the count of coil
loops wrapped around the magnet, B is the magnetic field inside the magnet, and Ai represents
the area of each individual loop of the antenna oriented perpendicular to the magnetic field.

More in detail, within each of the CCT subscale magnets developed at LBNL, a configuration
of six antennas is arranged as illustrated in Figure 1.3. The labeling system employs two sets of
numbers, denoted as R and L, ranging from 1 to 6. These designations represent the right and left
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1.2. QUENCH 1. Superconducting Magnets

edges of each antenna, respectively. Each antenna is designed to measure the voltage difference
between the corresponding symmetric edges of the coil. For instance, antenna QA6 measures the
voltage difference between the points 6R and 6L.

(a) Edge of the antenna on the magnet (b) Antenna positioned on the magnet

Figure 1.2: Source: unknown. The images show the antennas positioned on the magnets at LBNL

Figure 1.3: Source: unknown. The image shows a scheme of the antenna’s positions around a CCT
magnet at LBNL
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Chapter 2

K-means clustering

Clustering is one of the most common exploratory data analysis techniques used to get an intuition
about the structure of the data. The goal of performing clustering is to identify subgroups in data
such that data points in the same cluster are very similar to other data points inside the cluster
and different from data points in other sub-groups.

2.1 Algorithm description

As I was continuing the work described in [12], I decided to apply K-means clustering for my
data-analysis.
The K-means algorithm is an iterative algorithm that tries to partition the dataset into a pre-
defined number K of distinct and non-overlapping clusters, where each data point belongs to only
one group. The goal of the algorithms is to make the intra-cluster data points as similar as possible
while also keeping the clusters as different (far) as possible.

The K-means algorithm works as follows, first, the number K of clusters is specified, and then
it proceeds in two iterative steps:

1. in the assignment step each data point is assigned the closest cluster’s centroid. Initially,
the centroids are initialized by first shuffling the dataset and then randomly selecting K data
points for the centroids without replacement.

2. in the update step the centroids are adjusted to match the sample means of the data points
that they are responsible for

The two steps are repeated iteratively until there is no change to the centroids and the assignment
of data points to clusters is not changing [9].
The algorithm assigns data points to a cluster such that the sum of the squared distance between
the data points and the cluster’s centroid is at the minimum, meaning that the objective function
2.1 is minimized.

J =

m∑
i=1

K∑
k=1

wik||xi − µk||2, (2.1)

where wik = 1 for data point xi if it belongs to cluster k, otherwise wik = 0 and µk is the centroid
of xi’s cluster.
The less variation we have within clusters, the more homogeneous (similar) the data points are
within the same cluster.

2.2 Clustering evaluation

Despite being straightforward to use, the K-Means algorithm encounters some limitations when
employed with large datasets. First of all, the algorithm complexity in time is O(tkn) where t is
the clock time for what we assume to be an iteration of the algorithm, n is the number of objects
and k is the number of clusters, this results in impractical computational demands for extensive
datasets.
Another issue is related to the necessity of specifying the number of clusters and the sensitivity of
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2.2. CLUSTERING EVALUATION 2. K-means clustering

the algorithm to the initialization. Selecting the optimal number of clusters is often an intricate and
subjective task, and making an incorrect choice can yield sub-optimal results. Moreover, K-means
is sensitive to the initial placement of cluster centroids. Different starting points for centroids can
lead to divergent cluster assignments, causing instability in the results and making it difficult to
guarantee the robustness of the clustering outcome [7] [5].

To address these problems I chose to evaluate the algorithm’s performance while varying the
number of clusters. This evaluation helps in determining an optimal number of clusters that best
represent the underlying structure in the data. In the following paragraphs I describe the evaluation
techniques I used.

K-elbow The elbow method is a graphical method for finding the optimal K value in a k-means
clustering algorithm. The elbow graph shows the within-cluster-sum-of-square (WCSS) values on
the y-axis corresponding to the different values of K (on the x-axis). The optimal K value is the
point at which the graph forms an elbow. Fig 2.1 shows an example of a K-Elbow plot.

Figure 2.1: Elbow plot used to determine the best K for QA1 data for the first thermal cycle

Silhouette analysis Silhouette analysis is an intrinsic method used to assess the quality of
clustering results by examining how well the clusters are separated and how tightly grouped their
members are. For each data-point i in the cluster CI we compute the mean distance between itself
and the other data points within the same cluster using equation 2.2

a(i) =
1

|CI | − 1

∑
j∈CI ,i̸=j

dist(i, j) (2.2)

where |CI | is the number of points belonging to the cluster |CI | and d(i, j) is the distance between
the data-points i and j.
Then we define the mean dissimilarity of the data-point i to the other clusters CJ , with I ̸= J . So
for each point i ∈ CI

b(i) = min
j ̸=i

1

|CJ |
∑
j∈CJ

dist(i, j) (2.3)

The cluster characterized by the smallest average dissimilarity is referred to as the ”adjacent
cluster” to object i, as it represents the most suitable alternative cluster for the data-point i.
Then, we compute the silhouette value of the data-point i as

s(i) =

{
b(i)−a(i)

max a(i),b(i) , if |CI | > 1

0, if |CI | = 1
(2.4)
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2.2. CLUSTERING EVALUATION 2. K-means clustering

subsequently −1 ≤ s(i) ≤ 1. A negative coefficient indicates that an object is more proximate to
objects in different clusters than to those within its own cluster, signifying a sub-optimal clustering
arrangement. On the other side, when the coefficient approaches 1, the objects are tightly grouped
within well-defined clusters, reflecting a favorable clustering outcome.
For every object in the dataset, we compute the silhouette coefficient s(i), and then, we calculate
the average silhouette score across all clusters. This collective average is termed the silhouette
score. To determine the optimal number of clusters k, we select the value that maximizes the
silhouette score while simultaneously minimizing the count of negative silhouette coefficients. This
approach ensures the identification of a clustering configuration that results in well-separated and
internally coherent clusters.

WCSS cross validation The Within-Cluster Sum of Squares (WCSS) Cross Validation is a
technique involving the division of the dataset into m subsets, where m < n and n represents the
total number of data points. Subsequently, a clustering model is constructed using m− 1 of these
subsets, leaving one subset aside for evaluating the quality of the clustering.
In the evaluation phase, for each data point within the reserved subset, the closest centroid is
determined based on the clustering model. Then, the quality of the model’s fit to the test set is
quantified by calculating the sum of the squared distances between all data points in the test set
and their respective closest centroids.
This process is repeated m times for each candidate value of k (the number of clusters), similar to
the approach employed in the elbow method. The optimal value of k is determined by identifying
the point at which the rate of change in the cost function, often represented as the WCSS, exhibits
the most significant transition.

Consistency test The consistency test is a method employed to assess the reproducibility of
clusters obtained through clustering analysis. When determining the optimal number of clusters,
denoted as k, a consistency test is conducted by repeatedly applying the clustering algorithm N
times, typically around 100 iterations. During each iteration, clustering is performed with the
same k value.
The assessment involves calculating the standard deviation of the number of data points within
the largest cluster for each iteration. The rationale behind this procedure is to identify the optimal
k value, which is characterized by the lowest standard deviation. A lower standard deviation sig-
nifies that across multiple iterations, similar clusters are consistently generated, indicating greater
stability and reproducibility in the clustering results.
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Chapter 3

First data analysis

As I mentioned in previous sections, during my internship I worked with data coming from a
quench antenna located inside CCT magnets at LBNL.

Datasets description My work on these data was divided into two phases, a first phase during
which I mostly worked on the algorithm and on the code using data already analyzed by Alberto
Plebani [12], and a second phase during which I used the previously developed code and routine-
analysis to analyze data coming from new magnets.

For this reason, I will often refer to these two different data sets, the first smaller one which
contains data regarding a single antenna for four different current ramps to quenches. This dataset
was mostly used to run tests on the code and optimize the data analysis algorithm; for this reason,
I analyzed the first one. In the present chapter, I will focus on the approach I used and developed
to analyze this first set of data.
The second dataset, as I will discuss more in-depth in section 4, is instead a wide dataset including
data coming from different thermal cycles and even different magnets. This difference obviously
had consequences on the choice of the data analysis approach.

The voltage data I analyzed are saved in .npy format with a standard name convention. Each
file is saved as X00 00000.npy where the first three symbols identify the ramp along the training
where data come from, the second number series is the code that associates the raw filenames from
the data acquisition system (DAQ) to the quench.

3.1 Code study and development

As first step, I reorganized and developed the code, written and used by Alberto Plebani in [12],
aiming to simplify its usage and tried to build some documentation on the usage of the main
functions for signal analysis, event detection, and study. A complete description of this work and
of the code organization is available in appendix 5.1. Here I want to stress that I kept the same
event definition used in [12]: A peak in the voltage is considered an event only if a spike above
a certain threshold is matched to a spike under a negative threshold within 40µs. Regarding the
threshold, I used a 1 mV threshold in order to have more events possible and therefore more
statistics.

At this point, I tested the new function and the new data analysis routine on data registered by
QA6 during the current ramp A04 00010. In Figure 3.1 I show a few examples of events extracted
from these data.

3.2 Analysis in Feature Space

The first step of feature analysis consisted of extracting interesting features from event data. In
particular, as Alberto did, I identified three main groups of features interesting to analyze that
could help us characterize voltage signals.

Voltage features
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3.2. ANALYSIS IN FEATURE SPACE 3. First data analysis

Figure 3.1: Examples of the events detected in A04 00010 using the described algorithm

• Maximum voltage: it is the value of the maximum voltage in the windowed event. It can be
useful because the quench events have a higher peak in the voltage distribution.

• Minimum voltage: it is the value of the minimum voltage in the windowed event. It can
be used instead of the maximum value as sometimes the negative spike is higher in absolute
value than the positive spike

• Absolute maximum: it is the absolute maximum value of the voltage in the windowed event.

• Maximum integrated voltage: it is the highest value of the integral of the voltage. The
integral of the voltage is a useful variable that can give information on the magnetic flux
received by the quench antennas. The integral is evaluated using the cumulative trapezoid
method provided by the scipy package of Python [14].

• Time difference between maximum and minimum: measures the difference in time between
the maximum and minimum in voltage

• norm of the voltage: the Euclidean norm of the voltage array, evaluated using the linalg.norm
function implemented in the numpy package[4]

Signal features

• Time 80: it is the difference between the time the voltage reaches 80% of the peak and the
time of the absolute maximum. The 80% mark is selected after the peak so that we look
only at how fast the voltage restores itself to its normal value after the spike

• Time 50: it is the difference between the time the voltage reaches 50% of the peak and the
time of the absolute maximum

• Time 30: it is the difference between the time the voltage reaches 30% of the peak and the
time of the absolute maximum

• Time 20: it is the difference between the time the voltage reaches 20% of the peak and the
time of the absolute maximum

Frequency features Following the path traced by Alberto Plebani in his work [12], the frequency
analysis of the signal was made using a Continuous Wavelet Transformation (CWT), for more
details on the analysis see for example [1]. In particular, I considered the following features
resulting from the CWT:

• CWT leading frequency: The leading frequency I obtain from the CWT frequency analysis
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3.2. ANALYSIS IN FEATURE SPACE 3. First data analysis

Figure 3.2: Correlation matrix for the mentioned features. We are looking for non-correlated
features.

• Occurrence 1000: Number of times the frequency of 1 kHz is found in the frequency distri-
bution at the time when the voltage is the highest.

Feature correlation

Starting the analysis from the results of Alberto’s work I first considered the single features trying
to understand which of them could be used to achieve an efficient clustering. For this reason, I
started with a correlation study of selected features. In Figure 3.2 I show the heat map for the
correlation plot.
Using this heat map it’s immediate to see which features are correlated. In particular, we see

as expected, that all the voltage features are correlated. The most interesting information we
get about the feature correlation is that the time difference between the maximum and minimum
voltage is independent of every other feature. Upon conducting further analyses, we observed that
the absence of any significant correlation between this particular feature and others is attributed
to its behavior resembling white noise. After further discussions, we concluded that the sampling
frequency employed for data collection is inadequate for extracting meaningful information from
this feature. On the other side, the plot shows a strong (positive or negative) correlation between
the occurrence of the 1000 frequency and the voltage features.

Studying feature correlations before applying K-means clustering is crucial for enhancing effi-
ciency. When features are highly correlated, they provide redundant information to the algorithm,
potentially leading to inaccurate clustering. Analyzing feature correlations allows for the identi-
fication and elimination of redundant features, improving computational efficiency and ensuring
that the clustering process is based on the most relevant, independent features. This results in
more accurate and meaningful clusters, optimizing the data analysis process.
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3.3. K-MEANS CLUSTERING 3. First data analysis

3.3 K-Means clustering

Starting from the previous considerations on features correlation, I decided to apply the clustering
algorithm to the events identified using three features: abs max, time 20, and cwt lead freq. The
result obtained using the new code is similar to that obtained in [12]: the best choice has been
to use three clusters that differentiate the events based on the values of the aforementioned three
features. In Figure 3.3, I illustrate how the events shown in Figure 3.1 have been divided into
clusters.

Figure 3.3: Event samples associated to each cluster
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Chapter 4

Second data analysis

New dataset

In this chapter, I will focus on the analysis I carried out on the second slot of data I used during
the second part of the analysis.
The main difference between the new dataset and the test one consists of the dimension. In the
new dataset, I have much more data to analyze, moreover, it’s raw data that needs pre-processing
in order to be cleaned from underlying noise. The new dataset consists of data from two magnets:

• sub 2: The subscale 2 magnet which is particularly important as it provides baseline data
for other magnets analysis, is impregnated with standard epoxy (NHMFL mix-61).

• sub 4: The subscale 4 magnet is impregnated with ultra-tough, or non-epoxy, epoxy (CTD
701X)

For the sub 2 magnet I analyzed data coming from three different thermal cycles, identified
respectively as thermal 1, thermal 2, thermal 3. The thermal cycles I analyzed were character-
ized by a different number of ramps to quench: 23 ramps for the first thermal cycle, 32 ramps for
the second thermal cycle, and 31 ramps for the third thermal cycle. For the sub 4 magnet, I only
analyzed a single thermal cycle, thermal 1, consisting of 13 ramps to quench.
It is also important to stress that the data along these different thermal cycles were sampled with
different frequencies. For magnet sub 2 the sampling frequency was 10 kHz for the first thermal
cycle, 20 kHz for the second, and 25 kHz for the third thermal cycle. Meanwhile, the sampling
frequency for magnet sub 4 was 25 kHz.

This second dataset I got to analyze was substantially different from the first one, main practical
difference consisted in the amount of data I had to analyze, for this reason, I had to change the
data analysis approach.

4.1 Data preprocessing

The new dataset consisted mainly of raw data from different quench antennas, in particular, each
file contains data regarding the voltage measured by each antenna and voltage decay due to the
Hall effect measured by Hall sensors. An example of data from the new datasets is represented in
Figure 4.1. In Figure 4.1, the first 12 columns contain the voltage values measured by the leading
(e.g. QALd 1) and the splice (e.g. QASp 1) edges of the six antennas.

Figure 4.1: Example of how data are organized in the data file and uploaded
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4.2. EVENT SELECTION & STATISTICAL ANALYSIS 4. Second data analysis

(a) Example of QA signal (b) Example of nonphysical signal

Figure 4.2: Comparison between a physical (first subfigure, current ramp A23 00011) and a non-
physical signal (second subfigure, current ramp A11 00022)

To adapt the previously developed code for the analysis of new data, I organized the data in
a structure similar to the one used in the prior analysis. Given the specific focus of this work,
for each current ramp, I concentrated on collecting and storing relevant information only for the
leading edge of the antenna. For this purpose, I employed the pandas library [10] to create and
manage data frames. I set up these data frames to include information from all six antennas for
every current ramp in each thermal cycle.

Looking ahead, it could be a good idea to also include data from splice edges and Hall sensors
in future analyses. These extra data sources might give us more helpful insights and make our
clustering techniques work even better, especially when we’re trying to understand events connected
to how current moves in the superconductors.

Data filtration

At this point, I conducted a preliminary analysis to gain insights into the signals under examination.
This basic analysis helped me spot and filter out data associated with current ramps that had
anomalies, mostly linked to issues in the Data Acquisition (DAQ) system.

In Figure 4.2, I present a visual comparison between a physical signal and other signals that
exhibit irregularities. It’s worth noting that the code I used proved to be quite robust; it reliably
identifies and separates events, even in tricky or unusual cases (see Appendix 5.2)

Figure 4.2 also shows the result of the application of a high-pass filter in order to clean the
signal. In particular, I used the function signal.butter from the scipy library [14] applying a
6th order filter, with a cutoff frequency of 400 Hz.

4.2 Event selection & statistical analysis

Threshold selection In the new data analysis, one of the key considerations is choosing the right
thresholds for our event detection algorithm. The threshold used in the previous data analysis was
too high for the initial current ramp during the first thermal cycle. So, for the analysis of ’magnet
sub 2,’ we did it twice – first with a 1 mV threshold and then with a lower 0.5 mV threshold. On
the other hand, I stuck with a 1 mV threshold for the analysis of ’magnet sub 4.’ This adjustment
in threshold values is important to make sure we get accurate results when identifying events in
our data. After selecting the correct threshold I proceeded to identify the events in all current
ramps of the different thermal cycles and magnets.
In Figure 4.3 I show 20 events randomly extracted from all the events identified in the different
ramps of the first thermal cycle.

4.3 Event analysis

I then concentrated on the statistical analysis of the events I had identified. Unlike the previous
dataset, the amount of data in this case was much larger. That’s why I started with some general
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4.3. EVENT ANALYSIS 4. Second data analysis

Figure 4.3: Examples of the identified events

Figure 4.4: Number of events comprehensively detected by different antennas along the first, second
and third thermal cycle for magnet sub 2 and first thermal cycle for magnet sub 4

statistical analyses to investigate how events were distributed within the thermal cycle and within
each individual current ramp. Furthermore, I found it interesting to compare how the distribution
and numerosity of events differed among the various antennas for the same ramp and within the
same thermal cycle. This comparative analysis gave insights into how events varied across different
sensors and provided a more comprehensive view of the dataset.

The graph in Figure 4.4 gives much information about the event distribution. One primary
observation is the significant disparity in event detection between antennas QA3 and QA4 in
comparison to the other antennas. This trend is consistently observed across various current ramps,
thermal cycles, and magnets. The reasons behind this observation may be various. Initially, I
thougth that these antennas might necessitate a lower detection threshold; however, experimenting
with lower thresholds did not alter the outcome. Notably, this phenomenon is not tied to any
specific magnet, as it is evident for both the sub 2 and sub 4 magnets. It is also possible that
the position of the antennas around the magnet causes the magnetic field flux through their coil
loops to be generally lower than that of the other antennas (resulting in a parallel magnetic field).
Consequently, they are less sensitive to what occurs within the magnet itself. This interesting
observation is currently an object of study in other research groups.

Figure 4.4 also highlights the absence of data for antenna QA6 in the context of the sub 4
magnet. This is because the signal from this antenna was degraded, and subsequently the event
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4.4. FEATURE ANALYSIS 4. Second data analysis

extraction algorithm required too many computational resources. Consequently, we were unable
to identify events for this antenna.

Furthermore, a compelling observation is that, overall, the virgin sub 4 exhibits more events
than the virgin sub 2. This aspect is worth looking at more closely, and it’s a good idea to
investigate it further. It could be helpful to try different ways of defining events to see if the
results are affected by the criteria we’ve chosen or if the same thing keeps happening.

Looking at results from the event detection one of the first things that can be noticed is the
increasing number of events along different ramps but most importantly along different ramps of
the same thermal cycle as I show with the three plots in Figure 4.5.

(a) A06 00014 (b) A07 00016 (c) A19 00007

Figure 4.5: Example of event distribution along the first thermal cycle for magnet sub 2

Since the events in each ramp are relatively few, a fact that would not allow us to make
an effective statistical analysis, and exhibit substantial similarity among them (see Figure 4.6),
in an effort to conduct a more comprehensive study and gain a deeper understanding of the
magnet’s behavior, I opted to examine all events originating from a single thermal cycle collectively.
Specifically, I focused my attention on the initial thermal cycle of the sub 2 magnet.

Figure 4.6: write a real caption and say what are the events I am considering

4.4 Feature analysis

Once the initial statistical considerations regarding the events were completed, I returned to study-
ing their characteristics. In an effort to improve the analysis, unlike what was done with the first
dataset, additional features were introduced, specifically the arc length and the number of peaks
identified after applying the CWT analysis.

Once again, the initial analysis conducted on these features involved studying their correlations
to gain insight into which ones were most significant. A result of this analysis is presented in
Figure 4.7. The first observation that naturally arises is that the newly added features should not,

18



4.5. PRINCIPAL COMPONENTS ANALYSIS 4. Second data analysis

in any way, improve the results compared to the previous analysis because, being correlated with
the existing features, they are not expected to provide additional information. Another interesting
aspect is that as the volume of data to be analyzed increased, the intensity of (anti-)correlation
measured among different features also intensified.

Figure 4.7: The image shows a heat map representing the correlation matrix of the different features
considered

4.4.1 Statistical analysis on the events

As an initial qualitative analysis of the events, I created plots to visualize the evolution of various
features over time to observe if there was a systematic variation in their values. In Figure 4.8, I
present the plots for the features that were considered most relevant, while the remaining plots are
included in Appendix 5.3.
The image above shows the temporal distribution of all features for the identified events during the
first thermal cycle of magnet sub 2. The dataset pertains to antenna QA1. The x-axis represents
the event’s sampling index. Since events are stored as time windows in which the event may or
may not be present, I have chosen to designate the start of the time window as the time reference
for identifying the event. For this reason, the x-axis label reads ”start.” On the y-axis, the values
associated with the feature under consideration in the plot are displayed.
The plots shown in Figure 4.8 do not display any systematic variation of the features over time.

4.5 Principal Components Analysis

One of the main results of the data analysis is the efficient application of Principal Component
Analysis (PCA) on our data set.
PCA is a widely used technique for analyzing large datasets with a high number of features per
observation. It helps in simplifying data while retaining as much information as possible and en-
ables the visualization of multidimensional data. PCA reduces the dimensionality of a dataset by
transforming it into a new coordinate system where most of the data’s variance can be described
with fewer dimensions than the original dataset [6].
In PCA, a collection of data points in a real coordinate space is represented by a sequence of unit
vectors called principal components. Each principal component represents a direction in which
the data best fits while being orthogonal to the previous components. These directions form an
orthonormal basis in which different data dimensions are linearly uncorrelated.
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(a) abs max (b) CWT lead freq

(c) diff t Mm (d) full integral

Figure 4.8: Scatterplot of the events feature over time. The colors reflect the cluster to which the
event belongs.

In data analysis, the first principal component is a derived variable that explains the most variance
in a set of variables presumed to be jointly normally distributed. Subsequent principal components
explain the most remaining variance after accounting for the previous components. This process
continues until all the variance is explained. PCA is particularly useful when many variables are
highly correlated, and reducing their number to an independent set is desired.
Mathematically, principal components are eigenvectors of the data’s covariance matrix, which can
be computed through eigen-decomposition or singular value decomposition. PCA is a straight-
forward eigenvector-based multivariate analysis and is closely related to factor analysis, which
incorporates domain-specific assumptions.

For the purpose of my analysis I applied PCA using scikit-learn decomposition library [11],
in particular by setting a 90% variance retention threshold, I aimed to strike a balance between
dimensionality reduction and information preservation. This ensured that the reduced dataset re-
tained a substantial amount of the original data’s variability, making it a suitable basis for further
analysis and interpretation.

Component EVR
Comp 1 0.669398
Comp 2 0.143993
Comp 3 0.084768
Comp 4 0.030355

Table 4.1: Explained Variance Ratio for the PCA

In table 4.1 I report the Explained Variance Ratio (EVR) for the PCA analysis. EVR gives
us a measure of the portion of the total variance in the original dataset that is explained by each
principal component; as expected, the first component alone explains more than 60% of the vari-
ance.

As one of the goals of the analysis is to gain an understanding of the physical phenomena
happening in the magnets, is interesting to understand which features are more important and
give a great contribution to each principal component for this reason, I made the plot 4.9.

One of the most significant observations that can be made regarding the content depicted in
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Figure 4.9: The image shows a heat map representing the contribution of each analyzed feature to
each of the principal components used in the analysis

this plot pertains to the fact that the different features contributing to each component are, in
fact, correlated with each other. Nevertheless, they make comparable contributions to the overall
variance, as exemplified in the case of the first component. This implies that the outcome achieved
through clustering based on these components will be superior to that obtained by considering
uncorrelated components alone, as it will be grounded in a richer information substrate.

4.6 Clustering results

Clustering was performed using the first 4 components obtained from PCA. In this case, as well, I
used the K-Means clustering approach described in Section 2.1. In particular, the various evaluation
techniques provided the following results:

• Silhouette Score: 4 clusters with a silhouette score of 0.748 (see Fig. 4.10)

• Number of negative silhouette score: 4 clusters (5 points)

• K-Elbow: 4 clusters (the plot of the K-Elobow cluster obtained is shown in Figure 2.1)

• WCSS cross-validation: 4 clusters with WCSS score of 18.16

Therefore, the optimal result is the one that involves dividing the data points into 4 clusters.
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Figure 4.10: Silhouette plot for different numbers of clusters

Figure 4.11: Representation of the data-points distribution in the 3-principal-components space

In picture 4.11 I show the results of the K-means clustering analysis using a number K = 4 of
clusters.

The largest cluster is undoubtedly the central red one, characterized by events like those shown
in Figure 4.12 - (a). The specific shape of this signal and the frequency with which it is detected
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suggest that it may be related to redistribution currents, one of the possible candidates among
electromagnetic phenomena that can cause quenching. Another possible source of this signal is a
mechanical phenomenon related to the superconductor cables, which repeat within the magnet.
In addition to this, three other clusters are identified. Cluster 1, represented in blue in Figure
4.11, is predominantly composed of events similar to the one shown in Figure 4.12 - (b). The type
of signal seems more like an acoustic signal, characteristic of a mechanical event, such as cable
friction or an epoxy crack inside the magnet.
Cluster 2, represented in green in Figure 4.11, is characterized by events mostly similar to those
represented in Figure (c). These events, mostly recognized and grouped by the algorithm, are not
so much physical signals as they are signals resulting from the application of a filter at the edges
of the signal.
Cluster 3, on the other hand, consists of events that have a signal shape similar to events in Cluster
0, as I show in Figure 4.12 - (d) but are characterized by different values of the PCA components.

(a) Example from cluster 0 (b) Example from cluster 1 (c) Example from cluster 2 (d) Example from cluster 3

Figure 4.12: Example of events that best represents the event in each cluster

Once the clustering was completed, I returned to the space of physical features associated with
individual events to observe if there were specific values of these features that could be associ-
ated with each cluster. In Figure 4.13, I present the boxplots related to the characteristics that
have proven to be the most significant and well-distinguished in the analysis of the different clusters.

(a) time 20 (b) occ 1000

(c) cwt lead (d) full int

Figure 4.13: Boxplot representing the value of the main feature in each cluster

In particular, in Figure 4.13 - (a), it can be observed that the time instant at which the
voltage reaches 20% of the peak intensity is very similar for clusters 0 and 3. These clusters were
characterized by a very similar signal shape. Furthermore, in Figures (b) and (d), it is evident
that cluster 1 takes on values for some features that deviate significantly from those of the other
clusters, as reflected in the scatterplot in Figure 4.11.
Additionally, in accordance with what was observed in Figure 4.11, the features of events in cluster
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Figure 4.14: Examples of the identified events

0 tend to assume very similar values, making the cluster very compact.
These results suggest that the data analysis with clustering has been effective, although there

are still areas for improvement. One of the aspects that certainly needs to be reevaluated is the
application method of the CWT analysis. It has been noted that the values reported for the lead
frequency of the CWT analysis are not compatible with the signal trend shown in Figure 4.12 -
(a).
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Chapter 5

Conclusions

With this work, we have been able to develop a tool that provides consistent event labeling and
allows for the detection of similarities between events. Though this is a notable accomplishment,
the significance of these findings is more moderate: we observed a significant increase in events
in sub 2 following the first thermal cycle, a phenomenon that requires further investigation to
better understand its implications. This increased event occurrence may have implications for the
magnet’s performance, although more research is needed to draw concrete conclusions.

Our analysis also revealed the presence of remarkably similar events within the dataset, which
raises questions about the underlying disturbances affecting the system, and further study is re-
quired to gain a deeper understanding of their significance.

The observation of a lower number of events in QA3 and QA4, is likely due to antenna ori-
entation with respect to the magnetic field direction, in agreement with what was observed and
studied by other researchers.

Additionally, we noticed that the sub 4 virgin ramp has shown a higher number of events
compared to the baseline magnet, possibly related to the mechanics of impregnation materials.
This observation provides insights into the behavior of these materials under different conditions,
but the precise implications for magnet design and long-term performance remain uncertain.

Some possible steps forward are the exploration of the variation in clusters across the magnet
data and efforts to pinpoint the sources of these signals, to do this would be useful and interesting
to incorporate acoustic and quench antenna data to refine our results and improve the model’s
efficiency. Comparative studies between sub2 and sub4 will provide additional context for the
observed events. Regarding the algorithm would certainly be interesting to test different clustering
techniques and develop a proper hyper-parameter tuning routine, this could the model’s flexibility.
This comprehensive approach will help us to better understand the system and contribute to its
reliability and efficiency in a more detailed manner.
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Appendix

5.1 Appendix A - code documentation and organization

I write this section with the purpose of making it easier for other people who want to used the code
developed by Alberto and me to understand the purpose and the usage of the different functions.
Here I will make a list of the main functions used in the data analysis explaining their arguments
and their output.

Class definition class Event Reduced():

def init (self, name, time, data)

Event selection

1. IdentifyEvent Reduced(time vec, volt vec, antenna, dtype, threshold):

• time vec: numpy vector containing the time information of the signal

• volt vec: numpy vector containing the voltage information of the signal

• antenna: string for the antenna name (eg. ’QA1’

• dtype: string saying if the data are filtered or unfiltered (after code modification useful
only for standard saving routine)

• threshold: threshold selected for the event identification

The function identifies and saves all the events in a given signal. Events are defined as
explained in the previous part of this work

Feature extraction

1. get subfolder names(folder path): takes as argument the path to the folder containing
subfolders. Is important to extract features from more current ramps with a single call to
the function.

2. ReadEvents Reduced(path): takes as argument the path to the event I want to get the
information of

3. def plotCWT(event, cwt lead, freq, save, path):

• event: Event - or Event Reduced object

• cwt lead: lead frequency of the CWT analysis

• freq: sampling frequency

• save: boolean, 1 for saving 0 for not saving the plot

• path: string, path to save location

The function returns the plot of the CWT analysis

4. SignalFeatures(event, perc):

• event: Event - or Event Reduced object

• perc: float, percentage of the peak we are interested in (eg. 0.8 to get time 80)
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The function returns the signal feature asked as input

5. FreqFeatures(event, plot):

• event: Event - or Event Reduced object

• path: boolean, 1 to get 0 not to get the CWT plot. In this case the plot is not saved.

The function returns the following features: occ 1000, cwt lead freq, num peaks

6. VoltageFeatures(event): Event - or Event Reduced object
The function returns the following features: max volt, min volt, norm, abs max, diff t Mm,

full integral

7. ExtractFeatures(event): Event - or Event Reduced object
The function calls all the previously defined functions and returns a list with the following fea-
tures max volt, min volt, norm, abs max, diff t Mm, time 80, time 50, time 20,

occ 1000, cwt lead freq, num peaks, full integral

8. SaveFeatures(events, path, n):

• events: list of Event or Event Reduced

• path: path to save location

• n: a string representing the number of features we are extracting, (eg. ’all for all
features), this is important only for saving reasons.

The function saves the feature in an n features.txt file.

9. BuildDataframe(path): takes as argument the path to the saving location to read the
feature. This function is written to read the all features.txt file and can be modified if
needed.

K-Means clustering and clustering evaluation

1. ScaleData(df model): The function takes as input a pandas data frame containing all the
features useful to clustering. Returns a rescaled version of the data frame.

2. show silhouette scores(clusters, k, df model, save):

• clusters: cluster object obtained as output from km.fit predict() function of the
scikit-learn

• k: number of clusters we want

• df model: pandas data frame with data on which we have to perform clustering

• save: boolean, 1 for saving 0 for not saving the plot

3. show single silhouette(model, k, df model):

• model: output of scikit-learn function KMeans

• k: number of clusters we want

• df model: pandas data frame with data on which we have to perform clustering

4. SilohuetteTest(kmin, kmax, df model):

• kmin: minimum value of k we want to test

• kmax: maximum value of k we want to test

• df model: pandas data frame with data on which we have to perform clustering

5. KFoldTest(ks, n splits, df model, path, save):

• ks: values of k we want to test

• n splits: number of folds we want to use

• df model: pandas data frame with data on which we have to perform clustering
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• path: string, path to save location

• save: boolean, 1 for saving 0 for not saving the plot

6. show parallel coordinates(clusters, df model, bestK, save):

• clusters: cluster object obtained as output from km.fit predict() function of the
scikit-learn

• df model: pandas data frame with data on which we have to perform clustering

• bestK: number of clusters

• save: boolean, 1 for saving 0 for not saving the plot

All functions exist not only in the Reduced version but also in a ”standard” version. This
”standard” version is intended to be identical to the ”reduced” one but is designed to be used with
objects of type Event rather than Event Reduced. The reason for developing two sets of functions
in parallel is that the test data and the data at the core of the analysis were saved with different
formats and information.

5.2 Appendix B - examples of nonphysical data

(a) A11 00022 - QA1 (b) A23 00011 - QA1

Figure 5.1: EVents detected by the algorithm on two different signals

The two images show how the algorithm detects events on both clean and noisy - probably
non-physical - signals.

5.3 Appendix C - Features distribution over time

Here, I present the temporal distribution of all features for the identified events during the first
thermal cycle of magnet sub 2. The dataset pertains to antenna QA1. The x-axis represents the
event’s sampling index. Since events are stored as time windows in which the event may or may
not be present, I have chosen to designate the start of the time window as the time reference for
identifying the event. For this reason, the x-axis label reads ”start.” On the y-axis, the values
associated with the feature under consideration in the plot are displayed.
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(a) abs max (b) cwt lead freq

(c) diff t Mm (d) full integral

(e) max volt (f) min volt

(g) volt norm (h) num peaks

(i) 1000 frequency occurance (j) time 20

5.4 Appendix D - Distribution of cluster’s feature

Here, I present the temporal distribution of all features for the identified events during the first
thermal cycle of magnet sub 2. The dataset pertains to antenna QA1. The x-axis represents the
event’s sampling index. Since events are stored as time windows in which the event may or may
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(a) time 50 (b) time 80

Figure 5.2: Feature distribution over time

not be present, I have chosen to designate the start of the time window as the time reference for
identifying the event. For this reason, the x-axis label reads ”start.” On the y-axis, the values
associated with the feature under consideration in the plot are displayed. The colors represent the
assigned cluster to which each data point belongs.

(a) abs max (b) CWT lead freq

(c) diff t Mm (d) full integral
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(a) max volt (b) min volt

(c) volt norm (d) num peaks

(e) 1000 frequency occurance (f) time 20

(g) time 50 (h) time 80

Figure 5.3: Feature distribution over time
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