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Superconducting materials

Super-conducting materials: materials that
can achieve a zero-resistance state for
particular values of temperature, magnetic
field, and current density
Quench: sudden and irreversible transition
of a portion of conductor to resistive state in
a superconducting magnet [SZ19]
Due to large stored energy magnets can be
damaged by quench (e.g. localized heating,
high voltage). Figure 1: Superconducting region for different alloys

magnets
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Magnet training

Spontaneous quenches happen below the
expected magnet performance
Magnets training: it takes several quenches
before reaching nominal performance
Current is increased until quench happen
(current ramp)
More current ramps constitute a thermal
cycle
Magnets mentioned here are
Canted-Cosine-Theta (CCT) subscale
magnets
Sub-scale magnets present lot of diagnostics,
including quench antenna (QAs) Figure 2: Example of QA on a subscale magnet
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Quench antenna

Quench antennas provide information on
events location and time
QAs measure V =

∑n
i=1

d
dt (

∫
BdAi)

A change in the voltage can occur for
different reasons:

▶ mechanical (epoxy cracks, friction, slipping)
▶ electromagnetic (current redistribution, flux

jumps)
Figure 3: Model of QA on the CCT magnet at LBL
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Global signal analysis

Dataset Data from two different CCT subscale
magnets from LBNL:

sub2: NHMFL mix-61 - baseline (standard)
epoxy impregnated magnet
sub4: CTD 701X - ultra tough
(epoxy-non-epoxy) impregnated magnet

Parameters tuning
different threshold depending on the
sampling frequency
different filters for the different magnets

Figure 4: Raw data registered from QA1 for ramps in
different thermal cycle
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Event detection - different antenna

Figure 5: Number of events comprehensively detected by different antennas along the first, second and
third thermal cycle for magnet sub_2 and first thermal cycle for magnet sub_4
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Event Samples

Figure 6: Samples of events from different ramp from the first thermal cycle - magnet sub_2
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First Features Study

The results presented here refers to
data from QA1 antenna for the 23
current ramps of the 1st thermal
cycle
Considered three groups of
features: voltage features, signal
features and frequency features.

▶ Voltage: max_volt, min_volt,
norm, abs_max, diff_t_Mm,
full_integral, arclen

▶ Signal: time_80, time_50,
time_20

▶ Frequency: occ_1000, cwt_lead,
num_peaks Figure 7: Heat-map of the correlation matrix for the mentioned

features. We are looking for non-correlated features.
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Principal Component Analysis

Principal Component Analysis
(PCA) for dimensional reduction:
all features are taken into
consideration
particularly important due to the
data set size
PCA retaining at least 90% of the
information
Explained Variance Ratio (EVR):

▶ Comp_1 : 0.650817
▶ Comp_2 : 0.140681
▶ Comp_3 : 0.094779
▶ Comp_4 : 0.046818 Figure 8: Heatmap representing features contributions to

each PCA component
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K-means clustering

Clustering performed over all events
identified along 1 complete thermal cycle
(sub2, thermal 1 - 23 ramps)
Final choice for number of clusters
determined using:

▶ Silhouette Score: 4 clusters (0.748)
▶ Number of negative silhouette score: 4

clusters (5 points)
▶ K-Elbow: 4 clusters
▶ WSS cross validation: 4 clusters (WSS

score of 18.16)
Figure 9: K-Elbow plot
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Clustering results

Figure 10: 3D cluster representation in PC space
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Event Samples from clustering

Figure 11: Samples of events from different ramp from the first thermal cycle - magnet sub 2 after clustering

Elisa Stabilini (Fermilab) Data Analysis K-means clustering



ML methods for superconducting magnets 15/25 Final presentation

Feature boxplots

Figure 12: Boxplot of the integral value and of the
time at which the 20% of the maximum voltage is
reached in each cluster

Figure 13: Boxplot of the lead frequency value and of
the occurrence of 1kHz frequency in each cluster
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Feature distribution across clusters

Figure 14: Integral value and reach of 20% of the
maximum voltage distribution

Figure 15: Lead frequency distribution in CWT
analysis and occurrence of 1kHz frequency

Elisa Stabilini (Fermilab) Data Analysis K-means clustering
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Cluster distribution in time

Figure 16: Example of events
distribution for ramp A06_00014 -
thermal 1

Figure 17: Example of events
distribution for ramp A15_00002 -
thermal 1

Figure 18: Example of events
distribution for ramp A24_00012 -
thermal 1
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Results

Development of a tool that can consistently label events and detect similarity between events
There is a very large increase in events in sub2 after the thermal cycle, which needs to be
better understood
Remarkably similar events which has implications on the underlying disturbances better
understanding is needed in the future
The low number of events in QA3 and QA4 are likely due to the orientation of antennas with
respect to the field direction
sub4 virgin ramp shown to have more events than the baseline magnet, as a result of the
impregnation material mechanics

Elisa Stabilini (Fermilab) Conclusions
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What’s next

Physics:
▶ More work is necessary to understand the variation of clusters across the

magnet data
▶ Try to locate the signal source
▶ Compare properties and feature of the two magnets sub2 and sub4

Algorithm:
▶ Using both acoustic and quench antenna data to improve results
▶ Test different clustering techniques to improve efficiency and flexibility of the

model
▶ Improve hyper-parameter tuning depending on different data features
▶ Try to implement an adaptive algorithm

Elisa Stabilini (Fermilab) Conclusions



ML methods for superconducting magnets 21/25 Final presentation

Thank You!
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Feature distribution along ramps

Figure 19: Example of feature distribution along
different ramps

Figure 20: Example of feature distribution along
different ramps
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Dataset details

Data from two different CCT subscale magnets from LBNL

sub2: standard epoxy impregnated magnet
3 different thermal cycles
3 different sampling frequency: 10 kHz, 20
kHz, 25 kHz respectively for the 1st, 2nd,
3rd thermal cycle
data from all antennas (QA1 - QA6)

sub4: epoxy-non-epoxy impregnated magnet
1 thermal cycle
sampling frequency: 25 kHz
data coming from antenna QA1 - QA5
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Global signal analysis details

different threshold depending on the
sampling frequency
different filters:

▶ sub2: high pass filter with 4500 Hz cutoff
frequency

▶ sub4: band stop filter with 4000 - 5000 Hz
cutoff frequency

different thresholds:
▶ 0.5 mV for 10 kHz and 20 kHz
▶ 1 mV for 25 kHz sampling frequency

Figure 21: Raw data registered from QA1 for ramps
in different thermal cycle
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