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Abstract

Deep learning models have been shown to outperform methods that rely on summary

statistics, like the power spectrum, in extracting information from complex cosmological

data sets. However, due to differences in the subgrid physics implementation and numer-

ical approximations across different simulation suites, models trained on data from one

cosmological simulation show a drop in performance when tested on another. Similarly,

models trained on any of the simulations would also likely experience a drop in perfor-

mance when applied to observational data. Training on data from two different suites of

the CAMELS hydrodynamic cosmological simulations, we examine the generalization ca-

pabilities of Domain Adaptive Graph Neural Networks (DA-GNNs). By utilizing GNNs,

we capitalize on their capacity to capture structured scale-free cosmological information

from galaxy distributions. Moreover, by including unsupervised domain adaptation via

Maximum Mean Discrepancy (MMD), we enable our models to extract domain-invariant

features. We demonstrate that DA-GNN achieves higher accuracy and robustness on cross-

dataset tasks (up to 28% better relative error and up to almost an order of magnitude better

χ2). Using data visualizations, we show the effects of domain adaptation on proper latent

space data alignment. This shows that DA-GNNs are a promising method for extracting

domain-independent cosmological information, a vital step toward robust deep learning for

real cosmic survey data.
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1 Introduction and Purpose

1.1 Background

The study of our cosmos, the vast expanse that surrounds us, has captivated human

curiosity for centuries. Cosmology, the scientific endeavor to understand the fundamental

structure, origin, evolution, and eventual fate of the universe, is a field that continually

pushes the boundaries of human knowledge. Through millennia of observation, mathemat-

ical models, and increasingly sophisticated technology, we have gained remarkable insights

into the workings of the universe.

In recent decades, technological advancements have ushered in a new era of cosmolog-

ical research. The advent of powerful telescopes, high-performance computing, and data

analysis techniques, including machine learning, have enabled a deeper understanding of

the cosmos. Among these tools, deep learning has emerged as a formidable tool for data

analysis and prediction in various domains, including cosmology.

1.2 The Need for Generalization through Domain Adaptation

Deep learning models have demonstrated exceptional capabilities in uncovering intri-

cate patterns and extracting meaningful features from vast quantities of data. Within

the realm of cosmology, these models have exhibited promising performance in extracting

valuable insights from simulated cosmological datasets. However, a critical challenge lies

in extending the applicability of these models to observational data, which represents the

true nature of the universe. This challenge necessitates a critical need for generalization,

leveraging the principles of domain adaptation and transfer learning.
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1.2.1 Domain Adaptation

Domain adaptation addresses the disparity between the simulated (source) domain and

the observational (target) domain. The source domain, typically the simulated data, con-

tains distinct characteristics due to differences in subgrid physics implementation, numer-

ical approximations, and other simulation-specific factors. On the other hand, the target

domain, consisting of observational data, encompasses the complexities and nuances of the

actual universe.

The core goal of domain adaptation is to bridge the gap between these domains, enabling

the deep learning model to generalize its knowledge from the source to the target domain

effectively. By minimizing the domain shift, where the source and target domains differ,

domain adaptation ensures that the model’s performance remains robust and accurate when

applied to observational data.

1.3 The Quest for Understanding the Parameters of Our Uni-

verse

Understanding the fundamental parameters that define the universe is a central pur-

suit in cosmology. These parameters encompass a wide range of characteristics, such as

the density of matter, the nature of dark energy, the initial conditions set at the Big

Bang, and the distribution of matter and energy across the cosmos. Accurately inferring

these parameters is essential for constructing comprehensive cosmological models that align

with observational data, thereby advancing our comprehension of the universe’s intricate

tapestry.

The underlying motivation for this project is to devise methodologies that enable the

extraction of precise and robust cosmological information from diverse datasets, including

simulated and observational data. Achieving this goal is paramount in fortifying our un-

derstanding of the universe, bolstering the accuracy of cosmological models, and ultimately
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shedding light on the profound mysteries that govern our reality.

In the subsequent sections of this report, we delve into the approach undertaken, the

methodology employed, and the results obtained in pursuit of this crucial endeavor.
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2 Project Execution and Milestones

This section offers a chronological overview of the project’s evolution, outlining the

key milestones, challenges, and the overall timeline. It sheds light on how the project

progressed, from its inception to its current state. The emphasis here is on providing a

comprehensive understanding of how the project evolved over time, showcasing its growth

and adaptation to various challenges.

The technical intricacies and detailed analysis of the project are comprehensively re-

ported in the research paper that was submitted to the NeurIPS conference, which is

presented in full in the subsequent section.

2.1 Understanding Graph Neural Networks and Domain Adap-

tation

In the initial phase of this project, a comprehensive study of relevant literature was

conducted, focusing on Graph Neural Networks (GNNs), particularly Graph Convolutional

Neural Networks (GCNs), and Domain Adaptation. Special attention was given to under-

standing Maximum Mean Discrepancy (MMD) and popular domain adaptation methods,

such as Adversarial Discriminative Domain Adaptation (ADDA) and Domain Adaptive

Neural Networks (DANN).

2.2 Code Familiarization and Infrastructure Setup

Upon acquiring a strong theoretical foundation, efforts transitioned to practical im-

plementation. The CosmoGraphNet GitHub repository was pivotal in this regard, as our

project is fundamentally an expansion of this previous work. The codebase was downloaded

and meticulously studied to understand its inner workings, including model architectures,

data preprocessing, and training processes. Moreover, part of the initial effort was in-
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vested in learning how to effectively utilize the Elastic Facility computing resources, made

available through Fermilab. ChatGPT This step was crucial to harness the computational

capabilities of high-performance GPUs, as training the models would have been impractical

without this significant computational power.

2.3 Implementing Domain Adaptation with MMD

Implementing domain adaptation with Maximum Mean Discrepancy (MMD) required

substantial modifications to the existing codebase. The primary objective was to enable the

model to learn from samples across multiple simulations. Unlike traditional training that

focuses on a single dataset, domain adaptation demands the model to generalize knowledge

across different domains. This necessitated the incorporation of two distinct data loaders

within the PyTorch training routine: one for each simulation.

The introduction of two data loaders allowed the model to simultaneously process sam-

ples from each simulation, facilitating a comprehensive understanding of the varying char-

acteristics inherent to different simulations. Consequently, the training process involved

optimizing a hybrid loss function. Alongside the pre-existing task-specific loss, an MMD-

based loss was introduced to quantify the domain discrepancy. This supplementary loss

was instrumental in guiding the model to align its learned features with domain-invariant

information, a critical step towards achieving effective domain adaptation.

During backpropagation, the combined loss, comprising both the original task-specific

loss and the newly introduced MMD-based loss, was utilized. The gradients from both

components were computed and utilized to update the model’s parameters. This intri-

cate training scheme ensured that the model not only excelled in its primary task but

also adapted effectively to the differing characteristics presented by distinct simulations,

establishing a foundation for robust domain adaptation.

The successful implementation of this tailored training routine, integrating MMD as
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a guiding principle, significantly enhanced the model’s ability to learn domain-invariant

features, leading to superior generalization across diverse cosmological datasets.

2.4 Experimentation and Optimization Challenges

In the experimentation phase, significant effort was directed towards optimizing the

models for superior performance. However, the initial attempts at running optimization

on the models yielded results that were logically inconsistent, hinting at potential errors

within the codebase. As is customary in intricate software development, encountering bugs

and inconsistencies during the early stages is not uncommon. Recognizing this, it became

evident that implementing a robust logging system was imperative to comprehensively

track and analyze the evolution of the training curves and other pertinent statistics.

To address this, a detailed logging system was meticulously developed, offering a com-

prehensive view of model performance and aiding in identifying and rectifying the issues

within the code. This logging system played a critical role in troubleshooting, allowing for

a systematic exploration of potential errors and facilitating the necessary adjustments to

the codebase.

Following this intensive debugging phase, the codebase was refined and stabilized, cul-

minating in optimized and logically consistent model runs.

2.5 Paper Drafting and Conference Submissions

With the optimized models and promising results in hand, the focus transitioned to-

wards presenting our findings to the academic community. We meticulously compiled the

research and insights into a well-structured research paper, aiming to contribute to the field

of cosmological data analysis and domain adaptation.

The research paper has been submitted to the esteemed NeurIPS conference, a leading

platform for cutting-edge research in artificial intelligence. However, it’s important to note
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that NeurIPS is currently in the process of reviewing submitted papers, and acceptance is

yet to be confirmed. We are eagerly awaiting the results and the opportunity to share our

work with the broader academic and research community.

In parallel, the research work gained recognition from the MLIAP conference, leading to

the acceptance of our abstract for a full talk at the conference in Paris. This acknowledg-

ment affirms the potential impact and relevance of our research, opening doors to engage

with a diverse audience and foster collaboration within the scientific community.
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3 Research Paper - Concise Technical Details

This section introduces the research paper, a product of this project and a submission to

NeurIPS, a conference where submissions are limited to four pages. The paper is a dedicated

exploration of the technical intricacies of the project, offering a detailed examination of

methodologies, models, experiments, and results.

The technical details deliberately streamlined in the earlier sections, which primarily

focused on the project’s timeline and evolutionary journey, find their place here. This

includes mathematical formulations of the losses, domain adaptation visualization plots,

and various other technical aspects fundamental to the project.

The succinct nature of the paper, a result of adhering to the page limit set by the confer-

ence, does not compromise its depth. Instead, it provides a concentrated yet comprehensive

understanding of the research, aiming to communicate the essence of the project’s technical

approach.
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Abstract

Deep learning models have been shown to outperform methods that rely on sum-1

mary statistics, like the power spectrum, in extracting information from complex2

cosmological data sets. However, due to differences in the subgrid physics imple-3

mentation and numerical approximations across different simulation suites, models4

trained on data from one cosmological simulation show a drop in performance5

when tested on another. Similarly, models trained on any of the simulations would6

also likely experience a drop in performance when applied to observational data.7

Training on data from two different suites of the CAMELS hydrodynamic cosmo-8

logical simulations, we examine the generalization capabilities of Domain Adaptive9

Graph Neural Networks (DA-GNNs). By utilizing GNNs, we capitalize on their10

capacity to capture structured scale-free cosmological information from galaxy dis-11

tributions. Moreover, by including unsupervised domain adaptation via Maximum12

Mean Discrepancy (MMD), we enable our models to extract domain-invariant13

features. We demonstrate that DA-GNN achieves higher accuracy and robustness14

on cross-dataset tasks (up to 28% better relative error and up to almost an order of15

magnitude better χ2). Using data visualizations, we show the effects of domain16

adaptation on proper latent space data alignment. This shows that DA-GNNs are a17

promising method for extracting domain-independent cosmological information, a18

vital step toward robust deep learning for real cosmic survey data.19

1 Introduction20

Accurate determination of cosmological parameters using big data from astronomical surveys is a task21

of paramount importance in modern science. Historically, the extraction of valuable cosmological22

information has relied on computing summary statistics [32, 17, 16]. More recently, deep learning23

methods, such as 2D and 3D Convolutional Neural Networks (CNNs), showed great promise in ex-24

tracting rich non-linear information that summary statistics struggle to capture [33, 40, 30]. However,25

CNNs lack scale-invariance, as their analysis is firmly anchored to the grid size of the convolutional26

kernels, while any information on scales below that is lost. Choosing a superfine grid to avoid27

information loss, though, would simply yield almost entirely zeros in case of sparse and irregular28

data, such as galaxy clusterings. Thus, CNNs result in an inadequate method for structured sparse29

data. In contrast, Graph Neural Networks (GNNs) [24, 4, 50, 47] can handle structured cosmic web30

data in a scale-free manner [42, 15]. As with any other model, the typical procedure is to train GNNs31

on labeled data (like simulations) and then infer cosmological parameters from unlabeled data (like32

observations). However, there is a significant risk of these models not generalizing in the presence of33

the domain shift between simulations and observations. Systematic biases have been demonstrated34

even in experiments that train and test on simulations with different subgrid physics [42]. Domain35

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



adaptation (DA) techniques [12, 44, 19, 28] can be used to increase model robustness to this type of36

domain shift. Here we propose the use of Domain Adaptive Graph Neural Networks (DA-GNNs)37

and investigate the utility of distance-based DA losses i.e., Maximum Mean Discrepancy (MMD) [6].38

MMD is an unsupervised DA technique because it does not require labeled data, which is paramount39

for future applications on observations. We show that our domain-adaptive models achieve stronger40

generalization across datasets than regular GNN models. Our work is a significant step towards41

building future models trained on simulations, yet robust enough to work on observational data.42

Related Work GNNs have shown great potential for extracting information from large sparse43

datasets, such as the distribution of galaxies, galaxy clusters, and cosmic large-scale structure [26, 29,44

42, 34, 43, 15]. Unfortunately, due to the complexity of most deep learning models, they often learn45

dataset-specific features, which renders them useless when testing on a different dataset (different46

simulations or astronomical observations). In astronomy, it has been shown that DA techniques47

applied to different types of CNNs can substantially improve model performance in cross-dataset48

applications [8, 11, 10, 38, 22, 2]. Recently, it has been shown that DA can be used on other types of49

deep learning algorithms such as GNNs [13, 25, 46, 48, 7, 45, 18]. However, DA on GNNs has not50

been used for any astrophysics or cosmology applications.51

2 Data and Methods52

Data We use galaxy catalogs from the CAMELS [39] magneto-hydrodynamic simulations, which53

follow the evolution of dark matter particles and fluid elements (baryons) from redshift z = 127 to z =54

0. We use snapshots at z=0 from two different simulation suites: 1) IllusrisTNG [31] was generated55

with Arepo2 1 and employs the IllustrisTNG subgrid physics model; 2) SIMBA [14] was generated56

with Gizmo3 2 and employs the SIMBA subgrid physics model. Using two independent models57

and codebases to simulate galaxies, cosmic gas, and large-scale structure is critical to assess the58

generalization potential of the machine learning models. In particular, we use the LH set of both59

suites, which contains 1000 simulations evolved with different random seeds and different values of60

two cosmological parameters (total matter density Ωm and the amplitude of density fluctuations σ8)61

and four astrophysical parameters (ASN1, ASN2, AAGN1, AAGN2 related to supernovae efficiency62

and active galactic nuclei (AGN) feedback, respectively)3. We use the following features from the63

galaxy catalogs as input to our models: 3D positions, stellar mass, stellar radius, stellar metallicity,64

and maximum circular velocity.65

Methods66

Following [42], we generate graphs from 3D galaxy catalogs; these graphs are rotation and translation67

invariant with respect to the catalogs themselves. We later feed them as inputs to the DA-GNN, an68

architecture based on CosmoGraphNet with the addition of DA techniques. The model is composed of69

two parts. The first part is a graph encoder that transforms the graphs into a vector in the latent space70

through graph blocks [4]. The second part is a simple feedforward network that performs regression,71

predicting the posterior mean µ and standard deviation σ of the Ωm cosmological parameter. This72

can be achieved by minimizing the following loss [27, 41]:73

Lµ,σ = log(
∑

i∈batch

(Ωm,i − µi)
2) + log(

∑

i∈batch

((Ωm,i − µi)
2 − σ2

i )
2), (1)

where Ωm,i is the ground-truth value for the i-th sample in the training set batch, and µi and σi are74

the mean and standard deviation, respectively, predicted for sample i.75

2.1 Domain Adaptation76

Our objective is to create models that generalize across domains i.e., cosmology simulations with77

different subgrid physics implementations. To assess this, we train on IllustrisTNG and test on78

SIMBA – and vice versa. We experiment with the use of MMD, a distance-based DA technique.79

MMD measures the distance of two probability distributions, based on the notion of embedding80

probabilities in a reproducing kernel Hilbert space. We include an MMD-based component in the81

1https://arepo-code.org/
2http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
3CAMELS dataset documentation: https://camels.readthedocs.io/en/latest/index.html
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network loss function, following [9, 49]. For two distributions Z1 and Z2 (with N samples each),82

this is calculated as:83

LMMD = log(
1

N − 1

N∑

i ̸=j

[k(z1i , z
1
j ) + k(z2i , z

2
j )− k(z1i , z

2
j )− k(z2i , z

1
j )]), (2)

where k is the Gaussian Radial Basis Function kernel and zpq is the sample q of distribution p (Z1 or84

Z2) [6, 35, 23, 49, 9]. The loss is calculated on the latent space distributions produced by the graph85

encoder when processing samples from SIMBA and IllustrisTNG sets. Our final objective function86

is L = Lµ,σ + λLMMD, where λ ≥ 0 controls the relative contribution of the MMD loss and is a87

hyperparameter of the model. We find that λ ≈ 0.1 for the best-performing models in this work. The88

MMD component of the total loss causes the graph encoder to generate similar latent distributions89

for both simulations, which will improve the performance of the regressor on cross-dataset tasks.90

Optimization and Computing Resources. We performed experiments on NVIDIA A100 40GB GPU.91

For each of the models, implemented using PyTorch Geometric [20], we perform a hyperparameter92

search using the Optuna library[1], with 50 trials per model. More details on code performance,93

model implementations, and selected hyperparameters can be found in the publicly available code4.94

2.2 Evaluation95

We split both IllustrisTNG and SIMBA data into training/validation/testing sets with a proportion of96

70%/15%/15%. During training, we save the final models at the epoch with the best validation score.97

For performance metrics, we use the mean relative error ϵ (reported in percentages), the coefficient of98

determination R2, and the χ2 (N = 150 test points), measured as:99

ϵ =
1

N

N∑

i=1

|Ωm,i − µi|
Ωm,i

, R2 = 1−
∑N

i=1(Ωm,i − µi)
2

∑N
i=1(Ωm,i − Ωm)2

, χ2 =
1

N

N∑

i=1

(Ωm,i − µi)
2

σ2
i

, (3)

where Ωm is the mean of Ωm value in the test set. A value of χ2 close to 1 suggests that the standard100

deviations are correctly predicted and can be seen as minimizing the second term of Equation 1. A101

higher (lower) value can be seen as an underestimation (overestimation) of the uncertainties[3].102

3 Results103

DA-GNN achieves significantly better results (up to 28% better relative error ϵ and up to almost104

an order of magnitude better χ2) on cross-domain generalization with respect to CosmoGraphNet,105

whilst achieving comparable results on the same domain test set 5, as shown in Table 1 and Figure 1.106

In [40], the authors were able to infer the value of Ωm with higher cross-domain accuracy. However,107

that analysis utilizes the full matter surface density maps i.e., 2D images, instead of the full 3D galaxy108

distributions. In [15], the authors propose a GNN-based model that performs well cross-domain109

when trained on the Astrid simulation [5] alone. However, this apparent robustness is achieved by110

choosing Astrid as the training set and by using input features that are less subject to simulation code111

variability – galaxy positions and 1D velocities. When authors try training on other simulations or112

using more simulation-dependant parameters (e.g., stellar mass), cross-dataset performance drops113

significantly. Therefore, domain-shift robustness across different cosmological datasets requires DA.114

Latent space organization Isomaps are two-dimensional projections of the multi-dimensional latent115

space [36]. Figure 1 shows the difference in the latent space structure without (top row) and with116

(bottom row) DA. Ellipses in the top right isomap highlight how the two distributions are encoded in117

4GitHub repository will be added after the anonymous review stage.
5In [42], authors get slightly better results for the same domain, and slightly worse for the cross-domain

tests. We impute these differences to choices such as batch sizes and optimization techniques we took due to
computational and time constraints.

6In Appendix A, the IllustrisTNG counterpart of this plot is presented.
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Table 1: Comparison of results: No Domain Adaptation (top) and MMD (bottom).
I -> I I -> S S -> S S -> I

R2 ϵ χ2 R2 ϵ χ2 R2 ϵ χ2 R2 ϵ χ2

NoDA 0.97 5.0 1.39 -1.04 43.8 59.43 0.97 5.2 1.79 0.22 25.0 185.54
MMD 0.97 4.7 1.12 0.69 15.7 17.99 0.97 5.9 1.54 0.68 16.7 19.96

Figure 1: Comparison of models without (top row) and with DA (bottom row), trained on the SIMBA
suite. From left to right, we report: scatter plot for the value of Ωm on 1) same domain, 2) cross-
domain and 3) the isomap showing how the GNN is encoding the two datasets in the latent space
(SIMBA - triangles, IllustrisTNG - circles)6. In the non-domain adapted isomap, ellipses highlight
regions where distributions lie, showing the difference between simulation encodings that leads to
substantial drop in performance on the cross-domain task.

different regions of the latent space. Without the MMD loss, the model encodes samples with very118

different values of Ωm close to each other, if they originate from different simulations (circles and119

triangles of different colors are overlapping). This scenario leads to the fragility of the regressor,120

which cannot learn to output different values for the same latent space encodings. On the contrary,121

the DA-GNN (bottom right plot) correctly encodes the samples in a domain-invariant way. Visually,122

circle and triangle distributions are overlapping, which indicates domain mixing. Furthermore, the123

direction in the color gradient shows that the DA-GNN encodes information such that the regressor124

can now more correctly predict cosmological parameters based on the encodings of both simulations.125

4 Conclusions126

We propose and demonstrate a method for unsupervised DA for cosmological inference with GNNs.127

We use an MMD-based loss to enable the domain-invariant encoding of features by the GNN. This128

approach enhances cross-domain robustness: compared to previous methods, DA-GNNs reduce129

prediction error and improve uncertainty estimates.130

Limitations The cross-domain accuracy remains worse when compared to single-domain perfor-131

mance. Although reaching the same accuracy might not be possible, more flexible approaches such132

as adversarial-based DA techniques [21, 37], instead of distance-based ones such as MMD, might133

yield better results. Moreover, due to computational and time constraints, our models have been134

trained and tested only on two of the four available CAMELS simulation suites. Using more suites135

would yield better cross-domain efficacy and reliability at assessment time. These limitations will be136

addressed in future work.137
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A Additional Plots295

Figure 2: Comparison of models without (top row) and with DA (bottom row), trained on the
IllustrisTNG suite. From left to right, we report: scatter plot for the value of Ωm on 1) same domain,
2) cross-domain and 3) the isomap showing how the GNN is encoding the two datasets in the latent
space (IllustrisTNG - triangles, SIMBA - circles). In the non-domain adapted isomap, ellipses
highlight regions where distributions lie, showing the difference between simulation encodings that
leads to substantial drop in performance on the cross-domain task.
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4 Conclusions

This comprehensive report has highlighted the evolutionary journey and technical in-

tricacies of our project, aiming to harness the potential of Domain Adaptive Graph Neural

Networks (DA-GNNs) for robust cosmological data analysis. The project evolved through

diligent stages, from extensive literature review and code familiarization to the implemen-

tation of domain adaptation techniques.

In our exploration, we studied Graph Neural Networks (GNNs) and various domain

adaptation approaches, with a primary focus on Maximum Mean Discrepancy (MMD) as a

key domain adaptation technique. The integration of MMD into our models allowed for the

alignment of features across different cosmological simulations, aiding in the generalization

of the models to diverse datasets.

The timeline and evolution of the project were meticulously outlined, emphasizing the

significant challenges and subsequent optimizations encountered throughout. Debugging

and optimization phases were pivotal in refining the models and achieving logically con-

sistent results. A strong logging system was crucial to track training curves and aid in

debugging.

The project culminated in the creation of a research paper, a condensed yet thorough

technical documentation that encapsulates the essential aspects of the project. This paper

was submitted to NeurIPS, presenting a focused view of the methodologies, results, and

domain adaptation techniques employed. The concise format, adhering to the conference’s

page limit, underscored the need for clear and precise communication of technical details.

The acceptance of an abstract for a full talk at the MLIAP conference further affirms

the project’s significance and potential impact within the scientific community. This recog-

nition serves as a stepping stone towards sharing our findings with a broader audience and

fostering collaboration and knowledge exchange.

In conclusion, this project not only deepened our understanding of cutting-edge tech-
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niques in machine learning and domain adaptation but also showcased the potential of

DA-GNNs in the domain of cosmological data analysis. The journey, marked by its chal-

lenges and triumphs, underscores the importance of innovation, collaboration, and relentless

pursuit of scientific advancement.
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