

Thermal Analysis of the Bus Bars for the 800MeV Injection Era

Silvia Picchi, Victor Grzelak Italian Summer School, final presentation 09/27/2023

Presentation Outline

- □ Introduction
- □ COMSOL thermal simulations for present conditions
 - Results
 - Validation
- □ COMSOL thermal simulations for PIP-II conditions
- □ Proposed changes
 - New busbars section
 - Results
- ☐ Peak temperature tables
- □ Conclusions

Proton Improvement Plan II

PIP-II is the plan to upgrade Fermilab's present accelerator complex:

- Building a new linear accelerator
- Improvement of the Booster

	Present	PIP-II		
Booster injection KE	400 MeV	800 MeV		
Machine frequency	15Hz	20Hz		
RF frequency range	37.9-52.8 MHz	44.7-52.8 MHz		
RMS bias current (tuning circuit)	1354 A	1695 A		

In the previous episode...

The components of the stations heat up due to these possible reasons:

- Driver input 4 kW RF
- High voltage from anode modulator
- High current bus for cavity tuning

The goal of this work is to investigate the heating caused by the bias supply line in the new operational conditions.

Figure: simplified system block diagram of a single station

9/27/2023

Booster station layout

The layout of each station of the Booster is composed by:

- The gallery, where the bias supplies are placed
- The penetration, which connects the gallery and the tunnel
- The tunnel, where the RF accelerating cavities are placed.

The bus bars

The devices that bring bias current to the ferrite tuners through the penetration are called **bus bars**.

Along the penetration, a fraction on their total length is exposed to air while the other fraction is wrapped in the neutron shield (poly-ethylene). This fraction is variable for each station.

During operation, bur bars heat up due to **Joule effect**. The heat generation and the lack of appropriate cooling could cause the overheat of the neutron shield.

$$\dot{Q}_{Joule} = I^2 R$$

Bus bars assembly

Bus bars assembly, technical drawing (measurements in inches)

The bus bars

Bus bars as seen from the gallery

Bus bars as seen from the tunnel

Presentation Outline

- **✓** Introduction
- □ COMSOL thermal simulations for present conditions
 - Results
 - Validation
- □ COMSOL thermal simulations for PIP-II conditions
- □ Proposed changes
 - New busbars section
 - Results
- ☐ Peak temperature tables
- □ Conclusions

COMSOL 3D simulation – geometry

Booster station layout

Simulation geometry

COMSOL 3D simulation – boundary conditions and materials

Boundary conditions Materials

Simulations results for 15Hz, 1354A RMS

Temperature along the surface of a clampshell

Validation of the results: comparison with thermocouples readings

Temperature along the surface of a clampshell

Validation of the results: comparison with thermocouples readings

Transient simulation

Temperature along the surface of a clampshell

Validation of the results: comparison with IR camera images

IR camera image of the bottom of the penetration

Temperature simulated value at the bottom of the penetration

Presentation Outline

- ✓ Last episode recap
- ☑ COMSOL thermal simulations for present conditions
 - Results
 - Validation
- □ COMSOL thermal simulations for PIP-II conditions
- □ Proposed changes
 - New busbars section
 - Results
- ☐ Peak temperature tables
- □ Conclusions

16

COMSOL 3D simulation – PIP-II conditions

Simulations results for 20Hz, 1695A RMS

Temperature gradient of the assembly

Temperature along the surface of a clampshell

COMSOL 3D simulation – PIP-II conditions

Comparison with experimental data (steady-state)

Line Graph: Temperature (degC) 134.3 <mark>upper</mark> 127.8 120.2 <u>lower</u> 106.8 z (ft)

Temperature along the surface of a clampshell

COMSOL 3D simulation – PIP-II conditions

Transient simulation

Experimental data

Temperature along the surface of a clampshell

Presentation Outline

- ✓ Last episode recap
- ✓ COMSOL thermal simulations for present conditions
 - Results
 - Validation
- ✓ COMSOL thermal simulations for PIP-II conditions
- □ Proposed changes
 - New busbars section
 - Results
- ☐ Peak temperature tables
- □ Conclusions

20

Proposed change: increasing the cross section

One of the many possible solutions to the thermal problem would be increasing the cross section of the bus bars. A bigger cross section would mean:

- Smaller resistance: $R = \rho \frac{L}{4}$, hence less power generation
- Bigger heat capacity, hence more heat stored in the mass of the bars

Taking into consideration a simple, lumped parameter equation that could describe the system:

$$-hA(T-T_{\infty})-\varepsilon\sigma A(T^4-T_{\infty}^4)+\dot{Q}_{joule}=\sigma cV\frac{dT}{dt}$$
Decrease in power generation
(about -50% power generation)

Increase in heat capacity (about +85% volume)

COMSOL 3D simulation – PIP-II conditions + new assembly

Simulations results for 20Hz, 1695A RMS, 5x3/8" cross section

Temperature gradient of the assembly

Temperature along the surface of a clampshell

22

COMSOL 3D simulation – PIP-II conditions + new assembly

Simulations results for 20Hz, 1695A RMS, 5x3/8" cross section

Temperature gradient of the assembly

Temperature along the surface of a clampshell

Presentation Outline

- ✓ Last episode recap
- ✓ COMSOL thermal simulations for present conditions
 - Results
 - Validation
- ✓ COMSOL thermal simulations for PIP-II conditions
- ✓ Proposed changes
 - New busbars section
 - Results
- ☐ Peak temperature tables
- □ Conclusions

24

Data evaluation – current sweep

Data evaluation – current sweep

In order to gather the data to build a reference table, the simulation has been computed for several different RMS values of the bias current.

The goal is to be able to evaluate the **temperature rise** as a function of the amount of RMS current carried by the bus bar.

The ΔT_{rise} is defined as the difference between the maximum temperature and the ambient temperature, since for this kind of problem the maximum temperature is the most significant data:

$$\Delta T_{rise} = T_{max} - T_{amb}$$

Data evaluation

After gathering a discrete number of $(I, \Delta T_{rise})$ points it is possible to fit the data and obtain the necessary RMS current to get a specific temperature rise.

27

Peak temperatures table

Section	ΔT_{rise}					
section	30°C	$40^{\circ}\mathrm{C}$	$50^{\circ}\mathrm{C}$	60°C	70°C	80°C
4x1/4"	943 A	1045 A	1143 A	1237 A	1329 A	1416 A
5x3/8"	1337 A	1524 A	1694 A	1846 A	1982 A	2010 A
""	ΔT_{rise}					
	90°C	$100^{\circ}\mathrm{C}$	110°C	120°C	$130^{\circ}\mathrm{C}$	140°C
4x1/4"	1501 A	1581 A	1686 A	1733 A	1803 A	1870A
5x3/8"	2208A	2284 A	2351 A	2400 A	2432 A	2446 A

Presentation Outline

- ✓ Last episode recap
- ✓ COMSOL thermal simulations for present conditions
 - Results
 - Validation
- ✓ COMSOL thermal simulations for PIP-II conditions
- ✓ Proposed changes
 - New busbars section
 - Results
- ☑ Peak temperature tables
- □ Conclusions!

29

Conclusions

- It has been proved that in the new working conditions the polyethylene shield will melt
- It has been obtained a reliable model of the assembly, that can be useful for future evaluations prior to experiments/tests
- An ampacity table has been made for quick consultation in case of future change in operational conditions
- A solution to the problem has been proposed

30

References

- Victor Grzelak, "THE FERMILAB BOOSTER RF MODIFICATIONS FOR THE 800MEV INJECTION ERA"
- Fermilab Accelerator Division. "Concepts book
- Matther Domeier. "Booster Bus Bar Replacement"
- Taylor Electronics Services. "Ampacity table for copper busbars"
- Engineering toolbox
- John H. Lienhard IV and John H. Lienhard V. "A heat transfer textbook".

Thank you for your attention!

Silvia Picchi, Victor Grzelak Thermal Analysis of the Bus Bars 09/27/2023

Backup

Lumped capacity analysis

Hypothesis: the temperature gradients are small, $T(\vec{x}, t) = T(t)$ (true if $Bi = \frac{hL}{k} \ll 1$) Energy balance:

$$-hA(T-T_{\infty}) - \varepsilon\sigma A(T^{4}-T_{\infty}^{4}) + Q_{joule} = \rho cV \frac{dT}{dt}$$

Solving this non-linear equation gives an approximation of the temperature variation of the busbars, from ambient temperature to steady-state.

Temperature T(t) for the 4x1/4" cross section, in open air.

IRMS = 1354A (current operating conditions)

Tsteady = 67.4°C

Temperature T(t) for the 4x1/4" cross section, in open air. IRMS = 1695A (PIP-II operating conditions)

Tsteady = 87.9°C

Preliminary analysis

Preliminary evaluations have been made:

- Investigating possible solutions to the problem
- Analytical lumped model of the busbars assembly

$$-hA(T-T_{\infty}) - \varepsilon\sigma A(T^{4}-T_{\infty}^{4}) + \dot{Q}_{joule} = \rho cV \frac{dT}{dt}$$

- 2D COMSOL simulations of single bus bars
- 3D COMSOL simulations of single bus bars

Comparison of different datasets

Parametric sweep

Soil thermal conductivity

- Changes with the time of the years and the weather conditions
- Affects greatly the results of the simulations

Finally, a value of 0.7W/mK has been chosen.

Parametric sweep

Concrete thermal conductivity

- Not specified in literature
- Affects greatly the results of the simulations

Finally, a value of 1.7W/mK has been chosen.

Natural convection calculations

Natural convection coefficient h can be evaluated from adimensional number of Nusselt, $Nu = h\delta/k$.

Grashof number:

$$Gr = \frac{g \Delta T \beta \delta^3}{v^3}$$

Prandtl number:

$$Pr = \frac{\alpha}{\nu}$$

Rayleigh number:

$$Ra = Pr \cdot Gr$$

And from the Ra number it is possible to use experimental correlations to calculate Nu.

Transient comparison (4x1/4", present conditions)

Transient comparison (4x1/4", present conditions)

Transient comparison (4x1/4", PIP-II conditions)

Transient comparison (4x1/4", PIP-II conditions)

Biasing ferrite tuners

- Modern high-energy accelerators use conducting structures known as **RF cavities**
- RF cavities are **electromagnetically resonant**
- Synchrotrons require the RF frequency to increase with the beam energy- so the resonant frequency of the cavities must be changed. This is accomplished using **ferrite tuners**.
- The ferrite of the tuners changes the inductance of the system, thus altering the resonant frequency of the cavity. This happens when a large amount of current is applied to the tuner- it creates a biasing field that changes the magnetic permeability of the tuner itself.
- Applying a large current causes a decrease in magnetic permeability.

RF cavity with ferrite tuner
© FERMILAB Accelerator division –
operations department

Another way around the problem

Instead of focusing on reducing the temperature, another effective way to solve the problem would be **reducing the current** needed by the ferrite tuners.

This can be done in different ways, such as **changing the harmonic number** of the accelerator or **redesigning the ferrite tuners**.

- The harmonic number is defined as $h = \frac{f_{RF}}{f_{rev}}$. It is the number of RF oscillations completed in the time it takes a particle to traverse one orbit.
- RF cavities resonate in a range of frequencies, as the current changes the magnetic permeability of the ferrite tuners (and therefore the resonant frequency).

RF cavity with ferrite tuner
© FERMILAB Accelerator division –
operations department

Calculating RF frequency curves

Momentum curves

$$p(t) = \frac{p_f + p_i}{2} - \frac{p_f - p_i}{2} \cos(\omega t)$$

$$\omega = 2\pi f$$

$$f \rightarrow \textit{machine frequency}$$

$$p_i = \sqrt{\left(\frac{KEi + m_p c^2}{c}\right)^2 - m_p^2 c^4}$$

$$p_f = \sqrt{\left(\frac{KE_f + m_p c^2}{c}\right)^2 - m_p^2 c^4}$$

Total energy

$$E_{TOT}(t) = m_p^2 c^4 + p^2(t)c^2$$

$$\gamma(t) = \frac{E_{TOT}(t)}{m_p}$$

$$\beta(t) = \sqrt{1 - 1/\gamma^2(t)}$$

Revolution frequency

$$f_{rev}(t) = \frac{\beta c}{C}$$

 $C \rightarrow Booster\ circumference$

RF frequency $f_{RF}(t) = h \cdot f_{rev}(t)$

RF frequency – Bias current transfer function

Fitting experimental data:

Spline interpolation of experimental data

Calculating new I_{RMS} :

Harmonic number h = 84 RMS current I_{RMS} = 1695A

Current ranges for different h

