SEARCH SCIPPING PROPER SCIPPING PORTMER CY SCIENCE

Thermal Analysis of the Bus Bars for the 800MeV Injection Era

Silvia Picchi, Victor Grzelak Italian Summer School, final presentation 09/27/2023

Presentation Outline

□ Introduction

❑COMSOL thermal simulations for present conditions

- Results
- Validation

❑COMSOL thermal simulations for PIP-II conditions

❑Proposed changes

- New busbars section
- Results
- ❑Peak temperature tables

❑Conclusions

Proton Improvement Plan II

PIP-II is the plan to upgrade Fermilab's present accelerator complex:

- Building a new linear accelerator
- **Improvement of the Booster**

In the previous episode…

The components of the stations heat up due to these possible reasons:

- Driver input 4 kW RF
- High voltage from anode modulator
- High current bus for cavity tuning

The goal of this work is to investigate the heating caused by the bias supply line in the new operational conditions.

Figure: simplified system block diagram of a single station

Booster station layout

The layout of each station of the Booster is composed by:

- The gallery, where the bias supplies are placed
- The penetration, which connects the gallery and the tunnel
- The tunnel, where the RF accelerating cavities are placed.

The bus bars

The devices that bring bias current to the ferrite tuners through the penetration are called **bus bars**.

Along the penetration, a fraction on their total length is exposed to air while the other fraction is wrapped in the neutron shield (poly-ethylene). This fraction is variable for each station.

During operation, bur bars heat up due to **Joule effect**. The heat generation and the lack of appropriate cooling could cause the overheat of the neutron shield.

$$
\dot{Q}_{Joule} = I^2 R
$$

The bus bars

Bus bars behind the bias supply Bus bars as seen from the gallery Bus bars as seen from the tunnel

Presentation Outline

❑Introduction

□ COMSOL thermal simulations for present conditions

- Results
- Validation

❑COMSOL thermal simulations for PIP-II conditions

❑Proposed changes

- New busbars section
- Results
- ❑Peak temperature tables

❑Conclusions

COMSOL 3D simulation – geometry

Simulation geometry

Booster station layout

COMSOL 3D simulation – boundary conditions and materials

Boundary conditions Materials

Simulations results for 15Hz, 1354A RMS

Temperature gradient of the assembly Temperature along the surface of a clampshell

Validation of the results: comparison with thermocouples readings

Validation of the results: comparison with thermocouples readings

Transient simulation

Validation of the results: comparison with IR camera images

IR camera image of the bottom of the penetration Temperature simulated value at the bottom of the penetration

Presentation Outline

❑Last episode recap

❑COMSOL thermal simulations for present conditions

- Results
- Validation

□ COMSOL thermal simulations for PIP-II conditions

❑Proposed changes

- New busbars section
- Results

❑Peak temperature tables

❑Conclusions

COMSOL 3D simulation – PIP-II conditions

Simulations results for 20Hz, 1695A RMS

COMSOL 3D simulation – PIP-II conditions

Comparison with experimental data (steady-state)

춘 Fermilab

COMSOL 3D simulation – PIP-II conditions

Transient simulation

Presentation Outline

❑Last episode recap

❑COMSOL thermal simulations for present conditions

- Results
- Validation

❑COMSOL thermal simulations for PIP-II conditions

- ❑Proposed changes
	- New busbars section
	- Results
- ❑Peak temperature tables

❑Conclusions

Proposed change: increasing the cross section

One of the many possible solutions to the thermal problem would be increasing the cross section of the bus bars. A bigger cross section would mean:

- Smaller resistance: $R = \rho \frac{L}{A}$ $\frac{L}{A}$, hence less power generation
- Bigger heat capacity, hence more heat stored in the mass of the bars

Taking into consideration a simple, lumped parameter equation that could describe the system:

$$
- hA(T - T_{\infty}) - \varepsilon \sigma A(T^4 - T_{\infty}^4) + \underbrace{\hat{Q}_{joule}}_{\text{decrease in power}}) = \underbrace{\hat{\rho cV}}_{dt} \underbrace{dT}_{\text{generation}}_{\text{(about -50% power generation)}} \underbrace{dT}_{\text{increase in heat capacity}}.
$$

COMSOL 3D simulation – PIP-II conditions + new assembly

Temperature gradient of the assembly Temperature along the surface of a clampshell

COMSOL 3D simulation – PIP-II conditions + new assembly

Simulations results for 20Hz, 1695A RMS, 5x3/8'' cross section

Temperature gradient of the assembly Temperature along the surface of a clampshell

Line Graph: Temperature (degC)

 \Box

Presentation Outline

❑Last episode recap

❑COMSOL thermal simulations for present conditions

- Results
- Validation

❑COMSOL thermal simulations for PIP-II conditions

❑Proposed changes

- New busbars section
- Results
- ❑Peak temperature tables

❑Conclusions

Data evaluation – current sweep

Data evaluation – current sweep

In order to gather the data to build a reference table, the simulation has been computed for several different RMS values of the bias current.

The goal is to be able to evaluate the **temperature rise** as a function of the amount of RMS current carried by the bus bar.

The ΔT_{rise} is defined as the difference between the maximum temperature and the ambient temperature, since for this kind of problem the maximum temperature is the most significant data:

$$
\Delta T_{rise} = T_{max} - T_{amb}
$$

춮 Fermilab

Data evaluation

After gathering a discrete number of $(I, \Delta T_{rise})$ points it is possible to fit the data and obtain the necessary RMS current to get a specific temperature rise.

춘 Fermilab

Peak temperatures table

Presentation Outline

❑Last episode recap

❑COMSOL thermal simulations for present conditions

- Results
- Validation

❑COMSOL thermal simulations for PIP-II conditions

❑Proposed changes

- New busbars section
- Results

❑Peak temperature tables

❑Conclusions!

Conclusions

- It has been proved that in the new working conditions the polyethylene shield will melt
- It has been obtained a reliable model of the assembly, that can be useful for future evaluations prior to experiments/tests
- An ampacity table has been made for quick consultation in case of future change in operational conditions
- A solution to the problem has been proposed

References

- Victor Grzelak, "THE FERMILAB BOOSTER RF MODIFICATIONS FOR THE 800MEV INJECTION ERA"
- Fermilab Accelerator Division. "Concepts book
- Matther Domeier. "Booster Bus Bar Replacement"
- Taylor Electronics Services. "Ampacity table for copper busbars"
- Engineering toolbox
- John H. Lienhard IV and John H. Lienhard V. "A heat transfer textbook"

\blacktriangleright Fermilab \bigcirc ENERGY \bigcirc Science

Thank you for your attention!

Silvia Picchi, Victor Grzelak Thermal Analysis of the Bus Bars 09/27/2023

Lumped capacity analysis

Hypothesis: the temperature gradients are small, $T(\vec{x}, t) = T(t)$ (true if $Bi = \frac{hL}{h}$ $\frac{\mu}{k} \ll 1$ Energy balance:

$$
-hA(T - T_{\infty}) - \varepsilon \sigma A(T^4 - T_{\infty}^4) + Q_{joule} = \rho cV \frac{dT}{dt}
$$

Solving this non-linear equation gives an approximation of the temperature variation of the busbars, from ambient temperature to steady-state.

Preliminary analysis

Preliminary evaluations have been made:

- Investigating possible solutions to the problem
- Analytical lumped model of the busbars assembly

$$
- hA(T - T_{\infty}) - \varepsilon \sigma A(T^4 - T_{\infty}^4) + \dot{Q}_{joule} = \rho cV \frac{dT}{dt}
$$

- 2D COMSOL simulations of single bus bars
- 3D COMSOL simulations of single bus bars

Comparison of different datasets

Parametric sweep

Soil thermal conductivity

- Changes with the time of the years and the weather conditions
- Affects greatly the results of the simulations

Finally, a value of 0.7W/mK has been chosen.

Parametric sweep

Concrete thermal conductivity

- Not specified in literature
- Affects greatly the results of the simulations

Finally, a value of 1.7W/mK has been chosen.

Natural convection calculations

Natural convection coefficient *h* can be evaluated from adimensional number of Nusselt, $Nu = h\delta/k$.

Grashof number:

$$
Gr = \frac{g \Delta T \beta \delta^3}{v^3}
$$

Prandtl number:

$$
\Pr = \frac{\alpha}{\nu}
$$

Rayleigh number:

$$
Ra = \Pr \cdot Gr
$$

And from the Ra number it is possible to use experimental correlations to calculate Nu .

Transient comparison (4x1/4", present conditions)

Transient comparison (4x1/4", present conditions)

Transient comparison (4x1/4", PIP-II conditions)

Transient comparison (4x1/4", PIP-II conditions)

Biasing ferrite tuners

- Modern high-energy accelerators use conducting structures known as **RF cavities**
- RF cavities are **electromagnetically resonant**
- Synchrotrons require the RF frequency to increase with the beam energy- so the resonant frequency of the cavities must be changed. This is accomplished using **ferrite tuners**.
- The ferrite of the tuners changes the inductance of the system, thus altering the resonant frequency of the cavity. This happens when a **large amount of current** is applied to the tuner- it creates a biasing field that **changes the magnetic permeability** of the tuner itself.
- Applying a large current causes a decrease in magnetic permeability.

<u> 중 Fermilab</u>

Another way around the problem

Instead of focusing on reducing the temperature, another effective way to solve the problem would be **reducing the current** needed by the ferrite tuners.

This can be done in different ways, such as **changing the harmonic number** of the accelerator or **redesigning the ferrite tuners**.

- The harmonic number is defined as $h = \frac{f_{RF}}{f}$ frev . It is the number of RF oscillations completed in the time it takes a particle to traverse one orbit.
- RF cavities resonate in a range of frequencies, as the current changes the magnetic permeability of the ferrite tuners (and therefore the resonant frequency).

operations department

Calculating RF frequency curves

 RF frequency $f_{RF}(t) = h \cdot f_{ren}(t)$

RF frequency – Bias current transfer function

Fitting experimental data:

Spline interpolation of experimental data Current ranges for different h

Calculating new I_{RMS} :

