

Trigger development for HGCAL's cassette testing system for CMS experiment

Tinfena Mattia Final presentation – Summer Italian internship 09/27/2023

Index

- 1. The LHC collider
- 2. The CMS experiment
- 3. The HGCAL High Granularity CALorimeter
- 4. The testing system for the HGCAL's cassette
- 5. Using an FPGA to substitute the meantimers

LHC – Large Hadron Collider

- The world's largest and highest-energy particle collider.
 - 17 mi in circumference
 - Deep 574 ft
- Four crossing points where the accelerated particles collide.
- Four detectors each designed to detect different phenomena:
 - 1. ALICE
 - 2. LHCb
 - 3. ATLAS
 - 4. CMS

CMS experiment

The Compact Muon Solenoid (CMS) experiment is one of the two large general-purpose particle physics detectors.

The principal sensors that there are in the CMS are in the barrel and in the endcaps:

- 1. The tracker
- 2. The electromagnetical calorimeters
- The hadronic calorimeters
- 4. The magnet
- 5. The muon detectors

HL-LHC

Cassettes production

- All the 525 cassettes for the hadronic portion of the HGCAL are produced at the Fermilab and assembled in the SiDet facility.
- The cassettes will be assembled in the Lab C where there are 4 assembling station and 2 cold rooms for long term testing.

Cosmic Trigger System for Cassette Testing

- The cassette burn-in test stand will have
 ~20 cassettes stacked and taking cosmic data for ~2 weeks
- We plan to install 2 planes of scintillators, above and below the cassettes to detect cosmic events and trigger the recording of the corresponding Trigger and DAQ events

Trigger features

Time resolution:

- The time resolution requirement is driven by the need to trigger the right edge of the 40MHz clock (~25ns)
- But we could try to resolve the pulse shape of the HGCROC, so 1--5ns

Spatial resolution:

- Knowledge of the exact muon path is not needed for triggering
- The system upgrade to allows the offline analysis using the x-y location of the scintillator trigger hit should be too expensive
- So, we do not need spatial resolution in the scintillator trigger, 1 channel per layer is enough

Technology adopted

- The single channel requirement allows using a single slab of scintillator or an array of extruded scintillators with WLS fibers merged on one PMT
- The 1-5ns timing requirement must be compared to the size of the plane 5m/(0.2m*ns)=
 25ns

- Using 2 PMTs allows to calculate the mean time of arrival
- The mean time of arrival is independent of the location of the hit along the WLS fiber
- It appears the hit is always in the middle of the fiber, regardless of the true origin
- This eliminates the 10ns uncertainty

Testing system for the HGCAL's cassette

- 4 fibers, threaded through 3 bars
- 4 fibers, threaded through 1 bar

Testing system for the Fibers

Old fibers New fibers

Actual testing system for the HGCAL's cassette

My Project Goal

Using an FPGA we can compute the meantime directly from the CFD, in this way we have 4 slower inputs instead of 1 faster and we can use the PMOD interface

Xilinx FPGAs and Vivado suite

- The FPGAs Field Programmable Gate Array are electronics devices that contain configurable logic blocks and a set of programmable interconnects that allow the designer to connect blocks and configure them to perform everything from simple logic gates to complex functions.
- FPGAs are programmed in Verilog that is an Hardware Description Language, a textual format for describing electronic circuits and systems
- FPGAs are generally used for:
 - Hardware prototyping
 - Hardware acceleration
 - Space avionics
 - Neural networks
 - Data acquisition

The Kria KR260 board

First, we built an input board to test the system using a breadboard

Firmware

First tests

The first tests were encouraging because we had a standard deviation less than 1ns but we
had a lot of noise on the output caused by the crosstalk

Solving the crosstalk problem

 To solve the crosstalk, we improved the board design with only the 4 inputs, and we used the old board in one separate PMOD connector for the output

Solving the crosstalk problem

PCB development

 I designed a PCB for the final project that will be produced and tested, and I'll include the results in the final report

Summary

I really enjoyed this internship for the following reasons:

- I had hands-on experience with all aspects of developing a trigger system
- I assembled the scintillator trigger planes with WLS (wave length shifting) fibers and connected to PMTs
- I connected the trigger planes to the NIM logic system
- I developed a PMOD interface card to bring the signals to an FPGA board
- I learned how to program FPGA with the Vivado suite and the SystemVerilog language
- I developed the firmware to compute the meantime of the input signals
- Tested the system and obtained good results

Bibiography

- [1] "HGCROC3-Si Datasheet"
- [2] "Cosmic Trigger System for Cassette Testing", Zoltan Gecse
- [3] "Status and Overview of the CMS HGCAL", Zoltan Gecse

