

Ricerca di anisotropie nella direzione di arrivo di elettroni e positroni con il *Large Area Telescope* di *Fermi*

> Niccolò Di Lalla niccolo.dilalla@pi.infn.it

Pisa, 13 Novembre 2015

Sommario

- 1. Motivazioni scientifiche per la ricerca di anisotropie
- 2. L'osservatorio Fermi
 - Descrizione dell'apparato sperimentale
 - La scienza di *Fermi*
- 3. Costruzione di un set di dati simulati
 - Test e sviluppo del *software*
 - Rimozione delle particelle secondarie
- 4. Analisi dati di volo (quattro mesi di presa dati)
 - Tagli di selezione degli eventi
 - Metodi di analisi
 - Confronto bin a bin
 - Sviluppo in armoniche sferiche
 - Analisi dei risultati
- 5. Studio della sensibilità prevista per Fermi con sette anni di dati

I raggi cosmici

- I raggi cosmici galattici sono accelerati prevalentemente in sorgenti come i resti di supernova (SNR)
- La composizione è largamente dominata da protoni, seguiti in abbondanza da elio (~10%) ed elettroni (~ 0.1 – 1%)
- Lo spettro energetico è rappresentato approssimativamente da una legge di potenza

$$\frac{dN}{dE} = A E^{-\Gamma}$$

 $\mathrm{con}\ \Gamma\sim 2.7$

La diffusione dei raggi cosmici

- Una volta accelerati, i raggi cosmici si propagano nello spazio interstellare sotto l'influenza del campo magnetico galattico (GMF)
- II GMF è la sovrapposizione di un campo a grande scala ($B_{reg} \sim 2 \mu G$), regolare e coerente con la distribuzione di materia nella galassia, e un campo a piccola scala ($B_{turb} \sim 4 \mu G$), di natura turbolenta e con scala di coerenza di ~ 100 pc
- Il raggio di Larmor delle traiettorie delle particelle cariche è:

$$r_{\rm L}[{\rm m}] = \frac{|\boldsymbol{p}|c~[{\rm GeV}]}{0.3~|\boldsymbol{B}[{\rm T}]|}$$

 $r_{\rm L} \sim 10^{-5} \text{ pc} ({\rm E} \sim 100 \text{ GeV})$

 Il moto dei raggi cosmici avviene in modo diffusivo (random walk) con tempo di propagazione nella galassia molto superiore a quello balistico

Elettroni e positroni nei raggi cosmici

- Contrariamente alla controparte adronica, gli elettroni ed i positroni perdono rapidamente energia attraverso l'emissione di radiazione di sincrotrone e per il processo di scattering Compton inverso
- Elettroni e positroni di alta energia (100 GeV 1 TeV) devono necessariamente essere originati da sorgenti relativamente vicine alla Terra (~ kpc) e potenzialmente distribuite in modo fortemente anisotropo
- Nonostante ciò, a causa del moto diffusivo dovuto alla componente turbolenta del GMF, la distribuzione attesa delle direzioni di arrivo a terra è ~ isotropa
- Si ricercano piccole deviazioni (~ 10⁻²–10⁻³) rispetto all'isotropia che possono fornire informazioni molto importanti sulle sorgenti in cui sono accelerati e sull'ambiente nel quale propagano

Ricerca di anisotropie

- La rivelazione di un flusso in eccesso rispetto a quanto atteso in caso di isotropia potrebbe permettere di identificare tali sorgenti e vincolare i modelli di propagazione diffusiva nella galassia
- I risultati dello studio delle anisotropie potrebbero aiutare a risolvere la questione sulla frazione di positroni, crescente sopra l'energia di ~ 10 GeV

Se i positroni fossero secondari puri (creati in seguito alle collisioni dei protoni con la materia interstellare) ci aspetteremmo una frazione decrescente con l'energia

È necessario un contributo aggiuntivo:

- Spiegazione astrofisica (pulsar)
- Annichilazione decadimento di materia oscura

Risultati analisi precedente Fermi (2010)

Il segnale ricercato è $\sim 10^{-2}$ – 10^{-3} (difficoltà nella misura) e, per questo motivo, è necessario un campione di eventi molto grande

Limiti superiori al grado di anisotropia di dipolo con un anno di dati¹

Grazie alla combinazione di grande accettanza angolare e durata della missione, Fermi ha prodotto un campione di dati con statistica significativamente maggiore di qualsiasi esperimento in attività ed è quindi lo strumento ottimale per questa tipologia di analisi

¹Phys. Rev. D, **82** (2010), 092003

L'osservatorio Fermi

Osservatorio internazionale su satellite lanciato dalla NASA l'11 giugno 2008 e dedicato alla misura della **radiazione gamma**

Parametri orbitali:

- Altezza nominale: 565 km
- Inclinazione: 26.5°
- Periodo: 96 min

Large Area Telescope (LAT)

- Telescopio a conversione di coppie
- Intervallo di energia: 20 MeV > 300 GeV

Gamma-ray Burst Monitor (GBM)

- Studio fenomeni transienti
- 14 scintillatori: 12 di Nal(Tl) e 2 di BGO
- Intervallo di energia: 8 KeV 40 MeV

Large Area Telescope (LAT)

Struttura modulare: matrice di 4 × 4 moduli (torri) Dimensioni: 1.8 m × 1.8 m × 0.72 m

Modulo del tracciatore

- convertitore:
- 18 piani x-y traccianti di rivelatori a strisce al silicio
- 16 piani di tungsteno per favorire la conversione (1.6 R.L. *on axis*)

Modulo del calorimetro di CsI(TI):

- 96 cristalli disposti in 8 piani (8.6. R.L. *on axis*)
- Misura dell'energia
- Immagine 3D dello sciame
- Reiezione del fondo

e⁺ Sept foto part Scudo p

Rivelatore di anticoincidenza:

- 89 mattonelle di scintillatore plastico
- Efficienza media maggiore del 99.97% per MIP
- Separazione dei fotoni dalle particelle cariche

Scudo protettivo

Sistema elettronico di acquisizione dati

Il LAT è intrinsecamente anche un rivelatore per elettroni

e

13/11/2015

La scienza di Fermi

13/11/2015

Costruzione di un set di dati simulato

Per testare e ottimizzare le varie componenti della catena di analisi sviluppata per lo studio delle anisotropie si è costruito **un set di dati simulato**

- Simulazione Monte Carlo di soli elettroni distribuiti in modo uniforme nel LAT
- Per ogni evento si associa una posizione realistica nell'orbita di Fermi
- Conoscendo le coordinate locali (date dalla simulazione MC) e usando i dettagli orbitali così associati, per ogni particella è determinata con opportune trasformazioni la direzione di provenienza in coordinate galattiche

La tecnica del *ray-tracing*

- Un flusso isotropo di particelle che si propagano attraverso un campo magnetico rimane isotropo in assenza di traiettorie associate a particelle secondarie
- La tecnica del *ray-tracing* consiste nell'integrazione numerica della traiettoria di una particella carica in un modello dettagliato del campo magnetico terrestre (IGRF) e permette la **distinzione e rimozione delle particelle secondarie da quelle primarie**

Rimozione delle particelle secondarie

Frazione di particelle secondarie della simulazione MC in funzione dell'angolo θ (nel LAT) e dell'energia

Con un taglio di selezione $cos(\theta) > 0.5$ e E > 60 GeV la frazione di secondari è ridotta a ~ 0.1 % nell'intervallo 60 – 100 GeV

Selezione degli eventi

Rapporto tra il flusso degli elettroni e quello dei protoni ~ $10^{-3} - 10^{-4}$

Per selezionare gli elettroni ed i positroni nei dati vengono richiesti

- Almeno una traccia ricostruita nel tracciatore
- Almeno 8 R.L. attraversati nel calorimetro
- Una qualità stimata per le misure di direzione ed energia superiore ad una soglia minima.
- Almeno 5 GeV di rilascio di energia nel calorimetro
- Un taglio per la rimozione delle particelle α e dei nuclei pesanti sfruttando la dipendenza dalla carica della perdita di energia per ionizzazione
- Un taglio per la rimozione dei protoni applicando alberi di classificazione prodotti dalle tecniche di analisi multivariata (preliminare) sfruttando la capacità del LAT di discriminare sciami elettromagnetici e adronici
- Il taglio su energia e campo di vista per la rimozione delle particelle secondarie

13/11/2015

Mappa degli eventi

- Quattro mesi di presa dati (gennaio 2011 aprile 2011)
 - Selezione preliminare in fase di sviluppo
 - Analisi blind futura con sette anni di dati
- Circa 455 mila eventi dopo l'applicazione dei tagli di selezione
- 12288 pixel di uguale area (~ 3 deg²) secondo lo schema di HealPix²

²ApJ, **622** (2005), pp. 759-771

13/11/2015

La tecnica dello *shuffling*

- L'esposizione del cielo non è uniforme (rocking nord-sud, SAA)
- La distribuzione delle direzioni di arrivo traccia l'esposizione
- È necessaria una mappa che mostri come apparirebbe in media il cielo visto da *Fermi* se la distribuzione degli elettroni fosse perfettamente isotropa (ipotesi nulla per l'esistenza di anisotropie)

Mescolando molteplici volte le direzioni di arrivo delle particelle **ogni possibile anisotropia nei dati viene eliminata**

13/11/2015

No-anisotropy sky map

Media di 40 mappe isotrope corrispondenti a 40 diversi *shuffling* degli stessi 4 mesi di dati

Metodi di analisi

Il confronto tra le due mappe permette di rivelare la presenza di anisotropie nei dati

Sono stati impiegati due diversi metodi di analisi:

- 1. Confronto bin a bin
 - **Bin indipendenti**, per scale angolari di pochi gradi (dimensione pixel)
 - Bin correlati, per scale angolari medio-grandi

Decomposizione in **armoniche sferiche** per l'analisi dello spettro di potenza

Confronto a *bin* indipendenti

- Per ricercare anisotropie sulla scala angolare della dimensione del pixel si considerano le mappe composte di **bin indipendenti**
- Si ricerca una deviazione statisticamente significativa tra il numero di particelle atteso sotto l'assunzione di isotropia e quello effettivamente rivelato (prescrizione di Li-Ma³)

³ApJ, **272** (1983), pp. 317-324

Distribuzione dei valori di significatività

Si riportano in un istogramma i valori di significatività ottenuti nei singoli pixel della mappa

In presenza di un flusso isotropo e nel limite di numero medio di eventi per pixel sufficientemente elevato, la distribuzione è statisticamente compatibile con una **Gaussiana di media zero e varianza unitaria**

Distribuzione dei valori di significatività

- Selezionando gli eventi con energia maggiore di 160 GeV (~ 51 mila, 3-4 eventi per pixel) la distribuzione dei valori di significatività risulta distorta
- Numero medio di eventi per pixel non sufficientemente grande da considerare valida l'approssimazione gaussiana

La distribuzione ottenuta per i dati è qualitativamente analoga a quella del MC simulato isotropo con lo stesso numero di eventi totali

13/11/2015

Confronto a *bin* correlati

- A causa del processo di diffusione che caratterizza la propagazione dei raggi cosmici, non sono attese anisotropie a scale angolari di pochi gradi (dimensione del pixel)
- Per ricercare anisotropie a scale angolari diverse dalla dimensione del pixel si considerano mappe a bin correlati, in cui il contenuto di ogni bin è uguale al numero integrato di eventi su una regione circolare
- In questo modo è molto probabile che almeno un bin abbia il centro approssimativamente allineato con la direzione della potenziale anisotropia
- Variando il raggio di integrazione si ottimizza la ricerca per una diversa scala angolare

Mappe di significatività a bin correlati

13/11/2015

Numero di trials efficaci

- La ricerca delle anisotropie è eseguita in ogni direzione del cielo (pixel)
- Nel giudicare la rilevanza statistica di un risultato dobbiamo tenere conto del grande numero di prove indipendenti eseguite
 - Usando mappe composte di bin indipendenti il numero di prove (trials) è uguale al numero di pixel
 - Nelle mappe a bin correlati il numero di prove indipendenti eseguite è minore del numero di pixel totali e per la loro valutazione si fa ricorso ad una simulazione Monte Carlo (MC)

$$T_{\rm eff} = \frac{\log(1-F)}{\log(1-P_{\rm pre})}$$

P_{pre} = *p*-value associato alla significatività pre-trial

F = frazione di mappe MCche mostra almeno un bincon significatività maggiore

13/11/2015

Probabilità post-trials

Tenendo conto del numero di *trials* efficaci si può calcolare il *p-value* post*trials* dei bin a significatività più alta di ciascuna mappa correlata

Tutte le probabilità post-trials non sono significative ($P_{post} \sim 0.1 - 1$)

13/11/2015

Mappa di fluttuazione

Il secondo metodo di analisi consiste nello sviluppo in serie di armoniche sferiche della mappa di fluttuazione

 E_i = numero di eventi rivelati nel pixel *i* $f_i = \frac{E_i}{\langle A_i \rangle} - 1$ $\begin{pmatrix} E_i - numero di eventi attesi nel pixel i (media delle N_{maps} mappe isotrope prodotte)$

Analisi in armoniche sferiche

• Le funzioni armoniche sferiche $Y_{\ell m}$ costituiscono un set completo e ortonormale sulla sfera unitaria. Ogni funzione quadrato-sommabile definita sulla sfera può essere espressa come serie di queste funzioni

$$f(\theta,\phi) = \sum_{-\infty}^{+\infty} \sum_{-\ell}^{+\ell} a_{\ell m} Y_{\ell m}(\theta,\phi)$$

• I coefficienti $a_{\ell m}$ vengono combinati usati per valutare lo **spettro di potenza angolare**

$$\hat{C}_{\ell} = \frac{1}{2\ell + 1} \sum_{m} |\hat{a}_{\ell m}|^2$$

• Un incremento del coefficiente \hat{C}_{ℓ} rispetto al caso di isotropia corrisponde ad un'anisotropia alla scala angolare di 180°/ ℓ

Spettro di potenza angolare

L'analisi in armoniche sferiche è eseguita con il codice *anafast* fornito nel pacchetto HealPix

Tutti i dati sono all'interno dell'intervallo di probabilità a 3o

I risultati sono consistenti con un flusso di elettroni isotropo

Limiti superiori sull'anisotropia di dipolo

Utilizzando il valore misurato del coefficiente dello spettro di potenza angolare \hat{C}_1 al variare dell'energia minima si possono porre dei **limiti** superiori al grado di anisotropia di dipolo

I risultati ottenuti con quattro mesi di dati sono in linea con quanto atteso riscalando opportunamente i risultati precedenti (un anno di dati) in funzione della statistica

13/11	/2015
-------	-------

Studio di sensibilità prevista per Fermi

Per studiare il livello di sensibilità del telescopio *Fermi* previsto con sette anni di presa dati, occorre prima determinare il **numero totale di eventi** attesi in funzione dell'energia minima

Parametrizzazione del flusso di elettroni dato dal *fit* alle misure di *Fermi*

$$V(E) = 181 \left(\frac{E}{1 \text{ GeV}}\right)^{-3.05} \text{ s}^{-1} \text{m}^{-2} \text{sr}^{-1}$$

In sette anni sono attesi più di 10 milioni di elettroni sopra 60 GeV

13/11/2015

Simulazione mappe di fluttuazione

Per ogni energia minima di interesse, si generano e si analizzano **molteplici coppie di mappe di fluttuazione simulate** corrispondenti ad un flusso **isotropo** ed uno **dipolare**

Distribuzione dipolare $I(E) = \langle N(E) \rangle (1 + \delta(E) \cos \theta)$

Distribuzioni dell'ampiezza di dipolo

Ad energia minima fissata, si riportano in un istogramma i valori di ampiezza di dipolo per le due serie di mappe

Sensibilità prevista per Fermi

Con sette anni di presa dati la sensibilità potrebbe essere sufficiente per osservare un'anisotropia di una sorgente come Vela

Conclusioni

- Ho costruito un set di dati simulato con il quale testare le varie componenti della catena di analisi sviluppata per lo studio delle anisotropie
- L'utilizzo della **tecnica del** *ray-tracing*, una delle differenze sostanziali rispetto all'analisi passata della collaborazione *Fermi*-LAT, ha permesso l'ottimizzazione di un taglio di selezione aggiuntivo per la **rimozione delle particelle secondarie**
- I limiti al grado di anisotropia ottenuti analizzando il campione di quattro mesi sono in linea con quanto atteso in base ai risultati precedenti (2010)
- Attraverso una simulazione Monte Carlo dedicata è stata valutata la sensibilità prevista per Fermi con sette anni di presa dati
- Il lavoro eseguito per questa tesi, insieme ai risultati dell'analisi finale sul *dataset* completo, saranno oggetto di una **pubblicazione da parte** della collaborazione Fermi-LAT, prevista nel corso del prossimo anno

SLIDES DI BACKUP

Gamma-ray Space Telescope

Funzioni di risposta

Selezione degli eventi

13/11/2015

Niccolò Di Lalla

Accettanza e contaminazione

Distribuzione valori significatività MC

Analisi in armoniche sferiche

13/11/2015