

INTERNSHIP AT LPL

Supervisor: Professor WILLIAM B. HUBBARD Student: SAVERIO CAMBIONI

> Final Report 12/2015

The Italian Scientists and Scholars of North America Foundation

SUMMARY

- <u>CONCENTRIC MACLAURIN SPHEROID MODELS OF ROTATING LIQUID PLANETS</u>
- THE EFFECT OF DIFFERENTIAL ROTATION (DR) ON GRAVITATIONAL FIGURES
- THE TIDAL POTENTIAL: ANALOGY WITH THE THEORY OF HYDROSTATIC EQUILIBRIUM
- MISCELLANEOUS

THEORY OF FIGURES

- The goal is to find the external gravitational potential of a liquid planet in hydrostatic equilibrium.
- Analytic methods balloon in complexity even for apparently simple cases (i.e. two constant-density layer)
- We need numerical solutions.

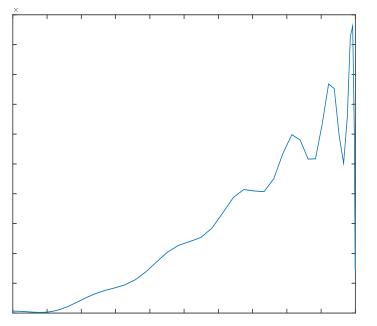
The theory of figure can be used for modeling the interior structure of a planet. We are applying it to Jupiter.

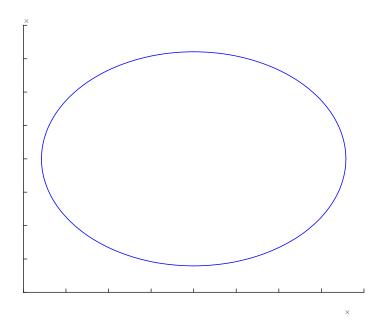
WHY JUPITER?

JUNO MISSION

- NASA mission, it will reach Jupiter on July 2016.
- The expected precision of the measurements of Jupiter's gravity field is one part in 10⁹ (!!).
- Such high precision data will require a gravitational modeling theory of unprecedented accuracy.

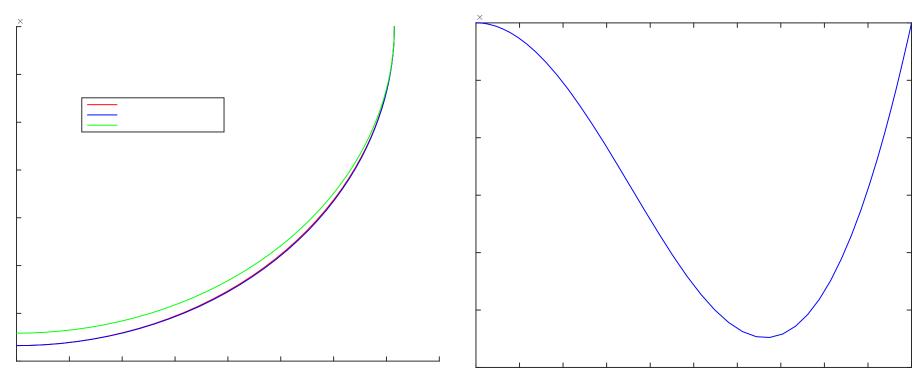
The application of Hubbard's "Concentric MacLaurin spheroid models" to Jupiter can provide us with the gravitational moments of Jupiter with a precision of one part in 10¹².





CONSTANT DENSITY MODEL

- MATLAB code for its implementation
- Numerical resolution of the potential equation
- Resolution of J_n integrals using Gaussian points
- Comparison with the analytic solution



The solution in this simple case provides a first order shape of an ellipsoid. The numerical procedure uses the Gaussian points. The related integration provides exact value of the integrals for polynomials of degree 2N-1, if N is the number of quadrature points.

> VARIATION IN DENSITY PROFILE

- Any change in the density distribution provokes a departure from the ellipsoid.
- The departure is more evident at middle latitudes (max rel_dev = 2.625438e-03)
- We prove it by a massless envelope model and a delta function core model

> THE MULTILAYER MODEL

- The problem of the theory of figures can be solved in closed or partially-closed form for a small number of special barotropes.
- The internal structure is modeled as a series of concentric Maclaurin spheroids (CMSs)
 → a sort of "onion".
- The CMSs can be arranged in sufficient numbers to closely approximate any prescribed barotrope.

For a complete explanation of the theory, see "Hubbard, W., 2013. *Concentric Maclaurin spheroid models of rotating liquid planets*. Astrophys.J. 768"

We developed a complete algorithm in Matlab for a general multi-layer structure. We test its reliability computing a two layer model for Uranus 2.

lambda=[1.0000000, 0.38119207] deltarho=[1.0000000, 11.638534]

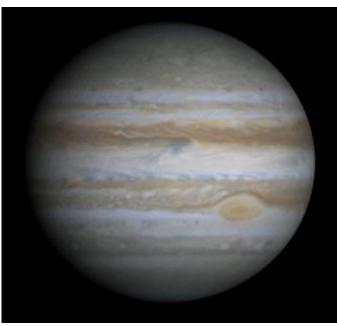
n,	<u>la</u>	Im	Itet	lt's	<u>lt'm</u>
2	0.00552639	0.000153936	0.00568032	0.0058101	0.00107477
4	-0.000124912	-1.2958e-07	-0.000125041	-1.84217e-05	-6.56908e-08
6	3.78142e-06	1.42036e-10	3.78156e-06	-4.89998e-09	-1.5528e-12
8	-1.3272e-07	-1.78751e-13	-1.3272e-07	2.61412e-10	8.40351e-15
10	5.09743e-09	2.45039e-16	5.09743e-09	8.37142e-13	5.21841e-16
12	-2.08062e-10	-3.56232e-19	-2.08062e-10	-6.46605e-15	-3.84524e-17
14	8.87239e-12	-1.16471e-21	8.87239e-12	3.19362e-15	1.74507e-15
16	-3.95546e-13	-7.71706e-22	-3.95546e-13	9.71865e-15	5.29831e-15
18	-3.34216e-14	-1.33275e-21	-3.34216e-14	1.24901e-13	6.35838e-14
20	-4.84561e-13	-1.84303e-21	-4.84561e-13	1.2717e-12	6.23064e-13
22	-2.86821e-13	-1.71999e-22	-2.86821e-13	8.66219e-13	4.31243e-13
24	3.57559e-12	3.05387e-22	3.57559e-12	-1.22279e-11	-5.2808e-12
26	-2.90242e-11	-3.7843e-22	-2.90242e-11	9.59047e-11	4.30631e-11
28	-2.47822e-10	-4.86461e-22	-2.47822e-10	9.59047e-11	4.30631e-11

Ipp from outer layer 0.309196574411535 Ipp from inner layer 3.598594843972181

Jtot = Js (surface) + Jm (mantle), since the model is linearly proportional to density

SUMMARY

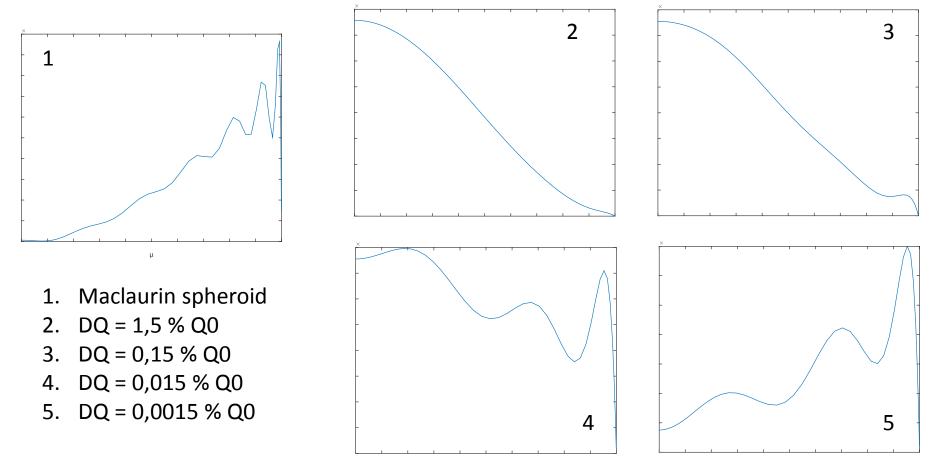
- CONCENTRIC MACLAURIN SPHEROID MODELS OF ROTATING LIQUID PLANETS
- THE EFFECT OF DIFFERENTIAL ROTATION (DR) ON GRAVITATIONAL FIGURES
- THE TIDAL POTENTIAL: ANALOGY WITH THE THEORY OF HYDROSTATIC EQUILIBRIUM
- MISCELLANEOUS


THE EFFECT OF DIFFERENTIAL ROTATION (DR) ON GRAVITATIONAL FIGURES

> DIFFERENTIAL ROTATION

- Both Jupiter and Saturn exhibit a strong zonal flow pattern with maximum amplitude at the equator.
- The equatorial atmosphere's rotation rate is significantly greater than that of the deep interior (as determined from the magnetospheric rotation rate).
- ... while the atmosphere's rotation rate near the pole is similar to that of the deep interior.

We consider the effect of zonal currents adding a variation term to the rotational potential


$$Q = Q_o + \Delta Q$$

> MACLAURIN SPHEROID WITH DR

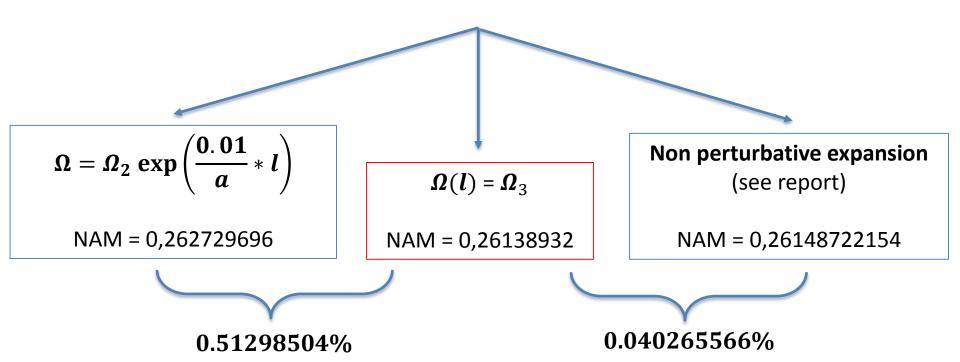
We consider several values for the perturbation ΔQ and we compared the departure of the spheroid from an ellipsoid.

THE EFFECT OF DIFFERENTIAL ROTATION (DR) ON GRAVITATIONAL FIGURES

> THE NORMALIZED SPIN ANGULAR MOMENTUM

$$w_{regress} = -\frac{3}{2} \frac{\frac{GMma^2 J_2}{r^3}}{C\Omega}$$

- Juno will provide accurate measurements of pole precession rate.
- ... coupled with accurate measurements of J2, we can determine the planet's spin angular momentum without further approximation.


Assuming the model of rotation of cylinders, one can compute the **NAM** (Normalized Angular Momentum) as follows:

$$NAM = \frac{4\pi \int_0^a dl' l^3 \int_0^{\sqrt{a^2 - l^2}} \rho(l', \xi') \Omega(l') d\xi'}{Ma^2 \Omega_3}$$

THE EFFECT OF DIFFERENTIAL ROTATION (DR) ON GRAVITATIONAL FIGURES

- > THE POLYTROPE OF UNITY INDEX
- A polytrope is a special barotrope: $P = K \rho^{\frac{n+1}{n}}$
- n = 1, K = 1.96: this is a good approximation of the equation of state for Jupiter.
- The mass distribution within the planet is: $\rho = \rho_c \frac{\sin(\pi\lambda)}{\pi\lambda}$ $(\lambda = \frac{r}{a}; \rho_c \text{ is core density}).$

SUMMARY

- CONCENTRIC MACLAURIN SPHEROID MODELS OF ROTATING LIQUID PLANETS
- THE EFFECT OF DIFFERENTIAL ROTATION (DR) ON GRAVITATIONAL FIGURES
- THE TIDAL POTENTIAL: ANALOGY WITH THE THEORY OF HYDROSTATIC EQUILIBRIUM
- MISCELLANEOUS

THE TIDAL POTENTIAL: ANALOGY WITH THE THEORY OF HYDROSTATIC EQUILIBRIUM

→ TIDAL POTENTIAL W → STARTING POINT FOR CMS WITH TIDES

- Presence of tesseral harmonics in the potential expansion (no longitudinal symmetry)
- Juno will be able to detect J_n^m (?)
- Tidal dissipation (see Io)

$$W = \frac{GM_p}{|R-r|} + W' \cong \frac{GM_p}{R^3} r^2 P_2(\cos\theta)$$

at the expansion to 2nd degree

One can use the potential theory also to calculate the hydrostatic-equilibrium response to a tidal perturbation due a perturbing mass.

$$Q_{solid-body} = \frac{1}{3}r^2\Omega^2[1 - P_2(\cos\theta)]$$

$$-\frac{1}{3}r^2\Omega^2 \rightarrow \frac{\mathrm{GM}_{\mathrm{p}}}{R^3}r^2 \longrightarrow q_{tidal} = -\frac{3M_pa^3}{MR^3}$$

 $J_{2,tidal} = \Lambda_2 q_{tidal}$ in place of q_{rot}

THE TIDAL POTENTIAL: ANALOGY WITH THE THEORY OF HYDROSTATIC EQUILIBRIUM

> LOVE NUMBERS

- Love numbers govern the planet's gravitational field distortion due to tides
- Estimated dissipation function Q by analyzing the tidal evolution of the satellite orbits
- Even moments J_{2n} differ slightly from their hydrostatic values
- Acquisition of the small odd moments J_{2n+1} and the tesseral moments C_{mn} and S_{mn}

$$W = \frac{GM_P}{R} \sum_{n=2}^{\infty} \left(\frac{s}{R}\right)^n P_n(\cos\theta) = \sum_{n=2}^{\infty} W_n \quad \longrightarrow \quad U = K_n(s)W_n$$

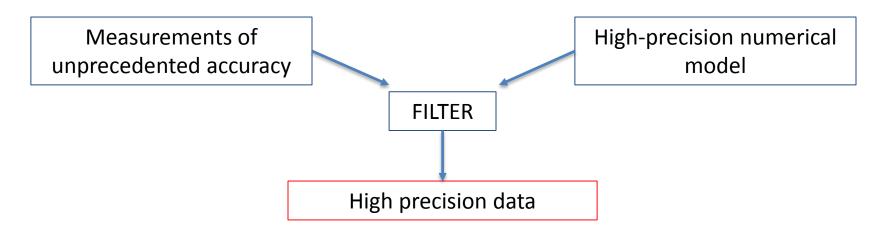
Kn(s1) \equiv kn are the dimensionless Love numbers.

To determine the tidal influence on a gravitational field, it is "sufficient" to compute the coefficient k_n in the equation

$$U = \sum_{n=2}^{\infty} k_n \left(\frac{s_1}{r}\right)^{n+1} W_n = \sum_{n=2}^{\infty} U_n$$

SUMMARY

- CONCENTRIC MACLAURIN SPHEROID MODELS OF ROTATING LIQUID PLANETS
- THE EFFECT OF DIFFERENTIAL ROTATION (DR) ON GRAVITATIONAL FIGURES
- THE TIDAL POTENTIAL: ANALOGY WITH THE THEORY OF HYDROSTATIC EQUILIBRIUM
- <u>MISCELLANEOUS</u>



NASA'S JUNO MISSION

Juno will improve our understanding of the solar system's beginnings by revealing the origin and evolution of Jupiter.

- Determine how much water is in Jupiter's atmosphere → which is the correct planet formation theory?
- Look deep into Jupiter's atmosphere to measure composition, temperature, cloud motions and other properties.
- Map Jupiter's magnetic and gravity fields, revealing the planet's deep structure.
- Explore and study Jupiter's magnetosphere near the planet's poles, especially the auroras → how does the planet's enormous magnetic force field affect its atmosphere?

> THE THEORY OF GIANT PLANETS

Theory of the nonideal thermodynamics of hydrogen and hydrogen-helium mixtures under the conditions found in giant-planet interiors.

- Jupiter is believed to be composed mostly by metallic hydrogen→ this is the cause of the Jupiter's powerful magnetic field.
- Giant planet's atmospheres and gravity field → clues for understanding the interior structure.
- From Galileo probe's data, evident abundance of noble gases in the upper atmosphere
 → Jupiter accreted large amounts of <u>ICY PLANETESIMALS</u> in addition to the surrounding solar nebula gas.

They were never heated; they formed in the solar system's nascent giant molecular cloud with little further alteration.

Amorphous ice model, enrichment of oxygen of about four times solar.

Icy planetesimals from the 5 AU region over the period of cooling of the nebula.

The clathrate model requires a factor of eight times solar.

> THE THEORY OF BROWN DWARFS AND EXTRASOLAR GIANT PLANETS

- A topic of great interest for planetary science, astrobiology, astronomy
- Many missions have been designed for observing transit objects (Kepler, Gaia..)
- The same accuracy in first recovery data for solar gas giants → many differences and analogies between solar giant planets and Jupiter-like exoplanets

In analogy with oblate solar planets, measuring the oblateness of exoplanets could led to a better understanding of their interior structure as well as their formation and evolutionary history.

"CONSTRAINING THE OBLATENESS OF KEPLER PLANETS"

- On the use of Kepler short cadence light curves to constrain the oblateness of candidate planets. KOI 423.01 → estimated oblateness 0.22 ± 0.11
- The uncertainness is 50% of the value \rightarrow A first attempt.
- Oblateness interpreted by authors as the evidence of the preservation of KOI's primordial spin angular momentum.
- ... but the rotation rate is not consistent with what expected from tidal dissipation. Not very reliable high quality factor.

> ON THE DIFFERENTIATION OF THE ASTEROID CERES

Two different methods for determining the shape \rightarrow clue for the internal structure

- 1. Data from **occultation observations** in order to constrain the size, shape, density and albedo of this large asteroid.
- 2. Image processing to compute Ceres's shape from the measurement of limb profiles.

	Equatorial radius	Polar radius
Method 1	479.6 ± 2.4 km	453.4 ± 4.5 km
Method 2	487.3 <u>+</u> 1.8 km	454.7 <u>+</u> 1.6 km

- Considerable discrepancy regarding the equatorial radius
- Since occultation measurements are more accurate, we rely on them.
- Ceres is expected to be a globally relaxed and differentiated object → waiting for evidence from Dawn mission

> FLOWING LIQUID WATER ON MARS : INTERVIEW WITH ALFRED MCEWEN

"Spectral evidence for hydrated salts in recurring slope lineae on Mars"

- New findings from NASA's Mars Reconnaissance Orbiter (MRO) that provides the strongest evidence yet that liquid water flows intermittently on present-day Mars.
- The presence of liquid water on Mars today has astrobiological, geologic and hydrological implications and may affect future human exploration.
- Recurring Slope Lineae (RSL): the capability of salt in lowering the freezing point of water.

The interview has been reported on "Panorama per i giovani", the online journal of my college in Rome ("Collegio Universitario Lamaro Pozzani").

https://panoramaperigiovani.it/scienza-tecnologia/following-the-water.html

- Contributions by each member of the department during a 3 day symposium
- "Planetary Science in Rome": presentation of the activities of the Radioscience Laboratory of Sapienza, University of Rome.

> LPL COLLOQUIUM, GRAD TALKS & MORE

- Journal club on every Friday, review of the latest papers regarding planetary science → "Constraining the oblateness of Kepler planets"
- Every Monday, Tuesday and Thursday (also evening)
- Very interesting discussions about the latest research results and missions
- Highlighting the strong synergy between space missions and planetary science
- Refreshments (a lot of good food, special occasions for sharing experiences)

> JUNO STM AT APL (3-7 NOVEMBER 2015)

- A unique experience for understanding how a real mission is run
- International contacts and collaborations
- High level scientific discussions

FUTURE DEVELOPMENT

- My Master Thesis: the report + simulation of the orbit of Juno and its perturbation, in order to study the observability of the gravitational moments.
- Continuing the collaboration with professor Hubbard and professor less (PhD application for LPL and\or for Radioscience Laboratory @ Sapienza)
- Attending next Juno STMs (mailing list and access to mission data) → JOI on July 2016 (? → no funding until PhD)

FUTURE DEVELOPMENT

Go Juno!!!!

