
SLAC/INFN Summer Exchange Program

SLAC Summer work

Summer 2017

Development of an edge �nding
algorithm optimized for LSST

I&T Sensor Integration

Author:

Giorgio Dho

Supervisor:

Scott Newbry

Abstract

During the installation of the LSST camera CCD sensors some precise mea-

surements will have to be performed to avoid collisionbetween adjacent rafts.

During the operation it will be necessary to measure width of gaps between

CCDs down to 125 µm with a precision of 25 µm. To accomplish the re-

quirements, software was developed to analyse images using C++ and Python

scripts to �nd the edges of the sensors and measure distance between them.

The software, along with a telecentric lens and camera, has been tested us-

ing a prototype target, as well as real CCDs mounted into a raft that will be

installed, getting promising results.

1

Introduction

The Large Synoptic Survey Telescope (LSST) is a science project which has
the goal to conduct a 10 years survey of the night sky delivering an expected
amount of data close to 200 petabytes in order to better understand some of
the mysteries of the structure of the cosmos, such as dark energy and dark
matter [1].

One of the most important components of the telescope is the camera. Its
heart, the focal plane, will be made of 21 modules, called rafts, and will be
inside the camera cryostat. Each raft, represented in �gure 1, is composed
of 9 CCDs which form a square and by all the electronics that is directly
connected to the CCD sensors. Each CCD is a detector of 16 Megapixels.

Figure 1: Schematic drawing of a single raft of the LSST camera

All the 21 rafts forming the Science sensor will have to be placed one next
to the other to form the focal plane as shown in �gure 2.

2

Figure 2: Schematic representation of the focal plane of the LSST camera

At the moment of building, which will happen here at SLAC, all the rafts
will have to be put in position inside the cryostat in the slots prepared for
them. This operation will be done with a system of gantries that will take
the rafts one after the other and pull them up to accurately put them in
position and lock them there. The rafts will have the side with the CCDs
facing down. During these operations it is fundamental to make sure the
rafts do not collide each other while being installed. This is due to the fact
that CCDs are very fragile and a crash is very likely to break them. A crash
would cause causing a loss of hundreds of thousands of dollars, since they are
very expensive, and months of time, possibly delaying the completion of the
camera. So it is very important tmake sure the rafts do not collide.
To be able to have a �ll factor of the focal plane (percentage of active material
on the total space covered by the focal plane) as high as possible, the rafts
must be placed close each other. The expected distance between them is 500
µm. To be sure to be able to move the rafts without putting them in danger
it was decided to be mandatory to measure distances down to 125 µm with
an uncertainty of 25 µm. This makes impossible to guide the installation
by looking at the rafts with naked eye or simply using a camera to record
video in real time. Another complication comes from the fact that, during
the operation, the raft that is being pulled up will be closer to the ground
than the ones already in position in the cryostat. In particular, imagining to
look at the rafts with a camera and have both of them in focus at the same
time a depth of �eld of least 38 mm would be required. Figure 3 shows the
problem with images.

3

Figure 3: Schematic representation of raft being positioned close to other two.

The spaces left between adjacent CCDs are very small (close to 500

µm)

Since there was not any commercial item that had the characteristics to
accomplish the task, the group had to come up with a system to solve this
problem. They thought to use four digital cameras equipped with telecentric
lenses, each one staring at a corner of the raft to be installed, to be able
to see where it is located compared to the others already mounted. A tele-
centric lens is a lens with a light stopper positioned behind the glass of the
lens, but before the camera. The stopper blocks o�-axis light and permits
collimated ight to reach the camera. As a result, in a speci�c region of space
the objects framed by the camera are magni�ed the same way, independently
from the distance from camera. This feature will allow to see the rafts in
di�erent distances from the camera, magni�ed the same way, to be immedi-
ately able to recognize if the raft is going to collide against another one or not.

Despite being able to build this system, it is still necessary to create
software to read the images from the cameras and translate them into in-
formation to guide the process of installation. The pictures taken by the
camera will be cropped to reduce the size and to focus only on the region
where the edges of the rafts are located. After that a program will use the
cropped image to give back information about the location of the edges and
the distance between the rafts involved in the picture.
My work focused on this last part, of developing an algorithm to return in-
formation of this kind from the cropped images, having the possibility to use
a cleanroom to take pictures of some targets.

4

Work with plastic blocks

At the beginning, the equipment in the clean room at disposal for me and
my supervisor, which are shown in �gure 4, were:

• A gray scale camera RT-mvBF3-2051aG

• A colour camera EO-10012C

• Telecentric lenses TC23064

• Plastic black blocks, to simulate CCDs

Figure 4: Picture of the table we worked on

It was possible to precisely move the blocks in the x and y directions and
measure the displacement with the use of a micrometer. Some images were
taken and cropped down to 128x128 pixels with the gap between the two
blocks in them. I used GIMP editor to crop the images. It allowed me to
decide exactly the dimensions of the cropped image and pixel position where
to start the resizing. The �gure 5 shows the result

5

Figure 5: Result of the process of cropping.

C++ macros for Root were used and after completing the work a Python3
translation was produced, using Root libraries, scipy and numpy. Using these
languages, the image could be easily read by some Root functions and be
translated into a matrix of numbers containing RGB values (intensity of the
light captured by the camera) for each pixel of the image. Looking at a row
of pixels in the direction orthogonal to the edgeline on the picture, a plot like
the one in �gure 6 could be displayed:

Figure 6: Example of a row of pixels in a 100 µm gap image. The peak corre-

sponds to the brightest part of the image, meaning the background light

By varying the width of the gap it was immediately clear that the shape
of the data from the rows of pixels changed drastically. Two di�erent cases
were highlighted: plateau or not plateau. The latter was the case when the
gap looked like a peak, as in �gure 6, the former when it seemed there was
a plateau instead of a single point on the top, like in �gure 7.

6

Figure 7: Example of a row of pixels in a 500 µm gap image. The plateau is

visible.

Therefore it was very important for the software to understand what kind
of shape the data had. The algorithm to sort this out behaves as it follows:
�rst, it looks for the maximum y value, where the peak or the plateau should
be located; to avoid picking a noisy pixel instead of the the maximum wanted,
the program checks the two pixels next to the candidate to become the new
maximum and if at least one of the two is too much lower in RGB value,
then the conclusion is that it is noise and the program continues looking for
another max. Once the maximum is found it counts the number of points
with similar values of RGB and if they exceed 8 a plateau is considered to be
discovered, because there are many points close to the highest value of RGB
found. The number 8, as well as the de�nition of close to the top or too much
lower are all arbitrary at this point. They depend deeply on the brightness
of the image and so on RGB values reached. All these things should be
calibrated during the last steps of preparation, when the �nal setup for the
integration will be ready.

Fit function for the edge

To �nd out where the edges of the blocks are located from the rows of data,
it was important to understand how the transition from a black region to
a bright region happens. For the di�raction of light when looking close to
the edge, the passage from dark to bright is gradual. When hitting the
edge if the light di�racts equally on both directions, then the edge should be
located close to the middle of this transition region. As a consequence it was
needed a function with a shape similar to an S (starting from a plateau and
rising or decerasing to another one) that had a parameter directly related

7

to the position of the middle, our edge position. This way it could have
been possible to minimize the propagation of errors to get to the information
desired. Two functions were mainly tried: the integral of a gaussian and an
S-function. Results on real data gave consistent results and the two had the
same number of parameters, but the S-function had parameters that could
be handled more easily. Therefore this function was chosen:

f(x) = a+
b

1 + (c
x
)d

where:

• a is the vertical position the lower plateau;

• b is the amplitude, the di�erence in y between the higher and the lower
plateau;

• c is the position half way from one plain to the other is. Here is where
the edge is thought to be located;

• d is a shape factor that descibes the steepness of the curve.

A representation of it is on the following �gure.

Figure 8: S-function.

Algorithm

As already explained a way was implemented to discriminate whether the
data took the shape of a plateau or not and the function to use to �t the data
in the transition region. This last piece is found by searching for the location
where the data points rise from the black baseline. This one is calculated from
the �rst points averaging their value and calculating their standard deviation

8

(σbaseline). The beginning of the transition region is de�ned as the moment
when three consecutive points are out of the interval baseline + k · σbaseline.
The value of k has to be calibrated, as pointed out previously. The end
of the transition region is found di�erently for the two cases. If there is
a plateau the program looks for the three consecutive points that get back
inside the interval delimited by the value of the previous point plus or minus
2k ·σbaseline. Here 2 times k is used because with more light the noise increases
as well, leading to more �uctuations. If instead, there is no plateau, then the
region stops at the point where the maximum is, which was already found to
determine the existence of the plateau. The use of three consecutive points
aims to avoid mistaking noise for the transition region. When three points
are going upward in value, this is the point the program must look for.
Repeating the same kind of commands but on reverse, the �t region for the
second edge can be found. The results are shown in �gure 9

Figure 9: On the left the result of the �ts for a plateau condition while on the

right the same with the other possibility.

These operations are iterated for each row of pixels, to save for each row
the position of the edges of the blocks from the parameter c of the function.
However, it is possible that a particular annoying noise or the shape of the
points too far from the one of the function prevent the algorithm of mini-
mization used by Root or the algorithm that �nds the region of transition
from working. In these scenarios the values returned for the edge positions,
if any, are expected to be wrong. Therefore a series of controls on the proper
ful�llment of the �t and of the results were conceived. In particular it is con-
sidered a good �t one whose χ2 divided by the number of degrees of freedom
is less than 13. Usually for this purpose 3 should be a correct value, but it
is clear that the S-function is not the function the points follow in the �rst

9

place, so the threshold value was kept higher.
The operation can be done with each single row of pixels or using an average
of several rows.

At the end, to approximate the location of the edge in each point in the
space, a linear �t is performed with the points gotten from the �ts. When
the linear �ts are done for both edges, the minimum distance between the
two and their relative angle can be inferred. The uncertainty for these mea-
surements comes from the propagation of the errors of the parameters.

Results

Camera choice

As described, two cameras were available to take pictures with. The colour
one has a better resolution because of the size of each pixel, 1.67 µm, while
the BF3 has 3.45 µm pixels. Nevertheless the BF3 gave better outcomes. In
fact the data from the colour one were much more noisy which made the �t
algorithm to fail more often or to give values much less precise. The �gure
12 shows the di�erence of the same conditions framed with the two di�erent
cameras. The reduction in the dimension of the pixels was overcome by severe
noise. This is likely due to the kind of �lters applied over the CMOS detectors
of the camera to make it able to read colours. The �lters are often disposed
as a chessboard over the pixels, with di�erent colours next to one another.
When using this camera looking at pixel after pixel, despite averaging the
values from each colour, it is visible when one of the base colour (red, blue
or green) matches the colour of the �lter, resulting frequently in spikes as
visible in the �gure.

10

Figure 10: On the left the result using BF3 camera while on the right the same

with the colour one.

Hence the camera that will be used is the BF3. In particular for this
camera, knowing the dimension of the pixels and the magni�cation of the
lenses used (0.138x), it is posible to calculate the real dimension of a pixel
on an image: it corresponds to 25 µm.
The result for a single edgeline is exempli�ed in the following �gure.

Figure 11: Best linear �t for an example of an edgeline.

The χ2 divided by the number of degrees of freedom is hardly ever below
10. Nevertheless the points seem to reside up and down the line, like oscil-
lating, so it seems there is not any systematic e�ect that draws the line away
from where the real edge is. With this camera the result of the program
analysing an image with 500 µm gap was very accurate, as the �gure shows.

11

Figure 12: The image and the result of the application of the algorithm are shown

superimposed.

Repetition

One of the �rst thing which was tested, was the ability of the system to
give the same results when taking images in di�erent moments of the same
setup. The answer turned out to be negative. Little oscillations, trembling
and camera shot noise made the outcome of each image, cropped in the
same position, always slightly di�erent (couple of microns). It became clear
that it was compulsory to take many images and average the results to have
robust information. Acting this way it was possible to have a distribution
of distances and angles to get the �nal answer from. The most important
aspect of this test is the fact that is possible to associate to a measurement a
consistent uncertainty. The mean uncertainty for the angle turned out to be
around 0.03 degrees, while for the distance it was less than a micron. However
for the purpose of the installation, the uncertainty given to the width of the
gap should be an indication of the distribution of these quantities, leading to
the idea of associating the standard deviation of the distribution as the �nal
uncertainty. It was possible to perform only one test with 9 images, so the
errors should actually be 0.09 degrees and 2 µm. It is expected these values
to change but it is very unlikely that the uncertainty on the distance shall
pass 5 µm.

12

Minimum distance

An important feature of the algorithm is the minimum distance that it is able
to resolve. For this to be tested, pictures were taken with di�erent widths
of the gap between the blocks. It was not known the real distance between
them but the relative increase in width was measured.
When the two sides of the blocks come too close one another, since it is
expected that the di�raction works the same way, the functions representing
the transition phase from black to bright overlap, preventing the transition
region from being seen completely. So the position of the edges are expected
to be closer to the peak in the picture instead of in the middle of the tran-
sition region. To take into account this e�ect, the background level of RGB
values reached with wider gaps was studied. This way the parameter of the
amplitude was forced to stay close to the value gotten from the background
study. Using this trick, the minimum distance measured by the algorithm
that was still consistent in relative decrease of width of the gap with the real
measurements was 56 µm. It was not possible to perform multiple measure-
ments so the absolute value is more or less an indication of what it should
really be. In spite of this it is con�dent enough to say that the algorithm
can measure reliably down to 60 µm which is less than the minimum value
required. The �gure 13 represents a row of pixels of the lowest gap measured
with success.

Figure 13: Since the gap is small it is possible to see that the �t functions would

have the higher plateau at bigger RGB values, This is the result of the

force bond given to the amplitude.

13

Light e�ect

Another important characteritic of the setup is how the light is shone on the
target, and how it a�ects the recording of the image. Four pictures were taken
with a �xed gap: two illuminating the blocks from the front, but placing the
light source in two di�erent positions, and two illuminating from the rear in
the same way the two on the front were settled.
For the ones illuminated from the front, the direct light highlighted surface
texture of the prototype blocks pattern that re�ected too much localized light
so that it was almost impossible from the data to recognize where the gap
was.
For the two illuminated from the rear, some data are shown in �gure 14

Figure 14: The same row of the two pictures taken with di�erent light directions.

Whilst the width of the gap did not change the position of the edgelines
was moved by 150 µm. This di�erence could not be explained by vibration
or oscillations, so it had to do with the inclination of the light hitting the
blocks. This suggested that the most important variable to control in the
�nal systemis probably the illumination.

14

CCDs

In the mid of my permanence a real raft with the kind of detectors that will
eventually be installed arrived. LSST will have two types of CCDs on the
raft: some with a golden layer around the silicon and some without. For
what concerns this work, the ones without the layer should behave as the
black blocks, so the skeleton of the code ought to be the same. The ones
with the golden edge pose some di�culties instead. In fact the edge that has
to be found is the one between the object and the empty space and in this
case it corresponds to the one between the gold and the background. Gold
is very re�ective, making it even brighter than the backgound, as �gure 15
shows.

Figure 15: The part with low values of RGB corresponds to the black anti-

re�ection coated surface of the CCD. On the left there is the noisy

background light from empty space behind the CCD. Between the two

is a spike which corresponds to the golden layer.

Algorithm

This algorithm has been only written in Python3 scripts. Because the raft
was inside a cryostat for testing, the pictures were taken looking through

15

a glass which increased the re�ected light adding more noise to the data.
Moreover the edge was now to be found in a much more illuminated region
making the presence of noise even worse. To smooth the data, cleaning it a
little from the noise an open source Python library was used[2]. From that
library a gaussian blur was applied to the picture prior the translation to the
form of a matrix of numbers. The e�ect of this blur can be seen in �gure 16.

Figure 16: The black point are the original data, while the blue are the ones after

blurring.

After this, the program looks for the max value in RGB, which should be
one of the two peaks of the golden layers. To be sure it is the kind of maxi-
mum needed, similar to what was described in the search for the plateau, the
number of points with values close to the maximum candidate are counted
and if they are more than 4 (we are not looking for a plateau, just a thick
spike), then the point is accepted. Afterwards it looks for the second maxi-
mum in a range that excludes all the points too close to the �rst: this way if
the second golden spike is much lower than the �rst it will be found anyway,
instead of picking a point on the transition region of the �rst.
Once the two maxima are found, they de�ne an interval in which the program
searches the minimum, which should be undoubtely close to the middle be-
tween the two golden layers. From that point it goes backward to �nd where
to make the �rst �t start analysing the slope, calculated as di�erence of the
RGB values of two consecutive pixels. As soon as the increase in slope is less
than 30% than the one calculated with the previous points, it stops. This
because it means that the search is arriving to the top where the slope is zero.
An extra point can be added to increase the number of degrees of freedom
if its RGB value is very similar to the one considered to be the beginning of
the region for the �rst �t.

16

The procedure is repeated similarly to �nd the end of the region for the �t
for the second edge. Then the �ts are performed with the same function.
If the �t has badly terminated or is too unprecise (χ2 too high), the region
for the �t is shrunk by one point and retried. If it gets worse or not better
enough (χ2 again) then it is discarded. A result is in �gure 17.

Figure 17: The black point are the original data, while the blue are the ones after

blurring. The red lines are the functions �tting the transition and the

green lines are the location of the edges

.

After this the same linear �t of the edge location for each row is performed
for each side. Then the points that are too far from the best �t line are erased
and the �t is done agian. The outcome is shown in the �gure 18

Figure 18: The black point are the original data, while the blue are the ones after

blurring. The red lines are the functions �tting the transition and the

green lines are the location of the edges

17

The program in the end calculates the minimum distance, repeats all the
steps for the number of images available, and give the averaged result in a
txt �le.

Results

Figure 19

The previous �gure shows on the left a portion of one of the sixteen pho-
tographs that were taken of the raft centered at the corners of four di�erent
CCDs of the same raft. From each of these pictures four smaller were ex-
tracted, each one to analyse the edges in every direction from the centre.
On the right there is the result of the application of the algorithm to these
smaller images. The full lines are the average of the sixteen best �ts of each
edgeline, while the dashed are their prolongation towards the centre.
It is clear that the lines which were expected to be parallel are not and more-
over the widths of the gaps vary too, going from 205 to 280 µm. At a �rst
glance this seems to be the result of an unreliable analysis. The expected
gap was measured in the past months and should have been around 250
µm. However when zooming the original image it can be observed that the
edgelines are not parallel and the gaps di�er too. This means that the al-
gorithm worked properly, translating truthfully the images into information
corresponding to what the camera captured.

18

The uncertaities on the distance obtained by averaging the images are around
4 µm, using the standard deviation of the distribution.

A major concern is the control of the illumination. As shown before,
di�erences in how the light is shone on the target can severely a�ect the po-
sition of the edgelines. In these photographs only the di�use room light was
used. To be sure that the edgelines are not displaced by light e�ects it will
be fundamental to perfectly control the illumination. Most likely the best
option would be to make it the most homogeneous possible, at least around
the region of interest.
To make the linear �ts more robust, another improvement would be to in-
crease the dimension of the cropped image, enhancing the number of points
to be used to perform the �t.

Conclusion

During these two months an algorithm to �nd edges was developed. It evolved
a lot eluding more and more problems that arose. It is capable of working
with black blocks that do not have special edges and with CCDs with the
golden edge. The results seem to be promising especially looking at the
constraints needed to be used. The 125 µm minimum gap and 25 µm error
are completely respected in the case of the black blocks, even though they
will be only used as developing tools. Since there were not more rafts it was
not possible to test the minimum distance that could be resolved with real
CCDs, but the work with them seems promising.
By making accurate measurements, this software will greatly reduce the risk
of a CCD collision that would cause costly damage and delays

Acknolegment

I would like to thank all the LSST group who made me feel part of the team
and were very kind and accomodating. In particular I thank Scott Newbry
and Kevin Reil for their patience and support they gave me. I certainly
acquired a lot of experience and skills in programming and in lab enviroment
and all of this was thanks to the SLAC/INFN Exchange Program.

19

Bibliography

[1] "LSST Camera Conceptual Design Report CD-1 Internal�, LSST collab-
oration 2006. URL: LSST.org

[2] openCV library, openCV.org

20

