
Implementation of a Trigger Algorithm for SuperCDMS

Chiara Magliocca

September 30, 2017

Abstract

This report describes the operation of a trigger algorithm, implemented for SuperCDMS. An
overview of the experiment and general informations about its trigger system are outlined in
Section 1. The description of the code is provided in Section 2. The study of the algorithm
efficiency is presented in Section 3.

1 The SuperCDMS SNOLAB Experiment
Substantial evidence supports the existence of vast amounts of dark matter at all scales in the
Universe. Although its nature is still unknown, the possibility that dark matter is made from
elementary particles beyond the Standard Model makes its detection and identication one of the
greatest challenges of modern physics. Direct detection experiments attempt to spot the rare in-
teraction of dark matter particles in our neighborhood of the galaxy with normal matter targets
in deep underground laboratories. The expected signature is elastic scattering of dark matter par-
ticles with nuclei. These nuclear recoils must be distinguished from the abundant electron recoils
due to interactions of normal matter particles in the targets.

Because a particle with electroweak-scale interactions and mass can be thermally produced in the
early universe in the right amount to account for the observed dark matter relic abundance, Weakly
Interacting Massive Particles (WIMPs) have been the main focus for the majority of direct dark
matter searches.

1.1 The Project
The SuperCDMS SNOLAB experiment was selected by the US Department of Energy (DOE) and
the National Science Foundation (NSF) to be a next generation (G2) dark matter search experi-
ment, with the main science goal to improve the sensitivity for dark matter particles with masses
10 GeV/c2 by at least one order of magnitude over existing sensitivities. The US agencies are
also interested in having the experiment be capable of reaching sensitivities where solar neutrinos
become a background for low mass dark matter particle detection.

The experiment will employ cryogenically-cooled germanium (Ge) and silicon (Si) crystals, capable
of measuring the very small nuclear recoil energies produced by elastic scattering of dark matter
particles with nuclei, and two different types of detectors:

1. To search for dark matter masses well below 1 GeV/c2, with sensitivity primarily limited by
electron recoil backgrounds

2. To measure both ionization and phonon signals from dark matter interactions and provide
exceptional discrimination between a nuclear recoil signal and electron recoil backgrounds
for dark matter particles with mass greater than about 3 GeV/c2.

Six detectors, along with the associated mechanical, thermal and electronic support structure,are
integrated into each modular Detector Tower.
For the SuperCDMS SNOLAB project baseline, we will have four towers (two with four Ge and
two Si, one with 6 Ge, the other with 4 Ge and two Si). These four towers will be housed in a
cryogenics system capable of operating up to 31 towers at temperatures as low as 15 mK.

1

1.2 Trigger System
The trigger will be a multi-level set of hardware and software algorithms that provides robust
triggering capabilities for the experiment. The ultimate goal is to have stable triggering at as
low of a threshold as is possible, an acceptable trigger rate and data volume, a fully efficient
trigger once analysis thresholds are applied, the ability to acquire the necessary calibration samples,
and minimal sensitivity to environmental noise. The trigger is also intended to operate without
deadtime and it must support running in a number of modes including:

• low-background running (WIMP search data)

• high-rate calibration runs

• acquisition of noise traces via random triggers.

The trigger needs to take in data from a number of sources including the two different detectors
and, at the end, we must be able to read out the experiment in a number of congurations that
include:

• Reading out all the towers in the experiment for the same trigger time

• Reading out just a single detector or tower that passes the trigger

2 The Code
The aim of this algorithm is to select the data that we can consider valid for a further offline
analysis, starting from a sample of data in ADC values taken directly by the detector without any
hardware trigger.
The algorithm discriminate good pulses from noise thanks to a threshold, set after an accurate
study of noise distribution, and examine the eventuality of contamination between pulses that
occur in the same event or in two different ones.
As a result we have two two-dimensional lists: the first one includes the current values of the
events that passed all the filters and are considered "good" so far, while the second one includes
the indexes of these events.

An event can be flagged as "good" if:

• It contains at least one pulse

• All the pulses start and end within the acquisition frame

• No pulse is contaminated by another one that occur in the same event

• No pulse is contaminated by another one that occur in the previous event

2.1 Study of the noise distribution
After reading the ADC values data from a file, the algorithm stores them in a two-dimensional list
called res(). Data are then converted from ADC values to current, centered to zero and reversed
(so that the pulses will be positive and the subsequent studies simplified) and stored in a list called
pulse().
Figure 1a shows an example of event stored in res(), while figure 1b is the plot of the same event,
with values converted to current.

As we just said, an event can be considered valid for a further analysis if at least a pulse is present.
But how can we know if that pulse is actually a signal or just noise? We need to set a threshold
and discriminate pulses from noise. To do this a study of the noise distribution in needed. The
threshold will be set at 3σ.
We start selecting all the events that contain no pulses, but just noise. To do this, a temporary
threshold is set to 0.02 µA (this value has been chosen after an analysis of a sample of events with
both noise and signal, realizing that the major part of the pulse exceed this value). The indexes
of the events that contain just noise are then stored in noise(), while the events that contain both

2

(a) (b)

Figure 1: (a) Plot of res [315]. Plot of the event 315 as it is taken by the detector without any
hardware trigger.
(b) Plot of pulse [315]. Plot in current(µA) of the same event, centered and reversed.

noise and signal are stored in nonoise().

At this time the standard deviation (σ) of each just-noise event is calculated to determine, at the
end, the mean value of all of these. The threshold is then:

Ath = 3σ ≈ 0.005 (1)

Figure 2 shows the plot of a just-noise event. The red line is the trigger threshold Ath = 3σ.

Figure 2: Plot of a just-noise event. The red line is the trigger threshold equal to 3σ

2.2 Low-Pass Filtering and Moving Average
What we need to do now is low-pass filter the pulse to get rid of high-frequency information which
are not actually useful for this algorithm. To do this, we calculate the moving average.
Each event is divided into intervals of fixed length (=sample period) Tsample (at this time chosen
to be 0.002 s) and the mean value of the signal in each interval is calculated (to clean it up from
additional noise and smooth it). Tsample parameter has been chosen equal to 0.002 since it seemed
that the high-frequency information were reasonably cutted out. It can be change to optimize the
algorithm, but, to understand its optimal value, an analysis of the algorithm’s efficiency is needed.
The mean values of the intervals are stored in a two-dimensional list mean[i][j], where i is the index
of the event and j the one of the interval.
Figure 3a shows the plot of the same event of figure 1b after the low-pass filtering process. Both
the figures are plotter VS Time(s) for a better comparison.
Figure 3b shows the plot of the mean value of the event as a function of the number of intervals
in which this is divided.

From now on, we will always use the filtered pulses.

3

(a) (b)

Figure 3: (a) Plot of mean[315]. Plot of the same event of figure 1b after the low-pass filtering and
moving average process. Here the size of the pulse is lower than the one of the pulse on figure 1b
because of the low-pass filtering process. For this reason, to study the characteristics of a pulse we
will go back to the original plot and to the original values, to not lose part of the signal.
(b) Plot of mean[315] (µA). The x axes are the intervals in which the event is divided.

Is now time to check the number of pulses present in each event. To do so, the algorithm scans
all the events and, in each event, checks whether a value exceeds the trigger threshold (the one
that was previously fixed). If it does, it saves the index of the interval that include that value in
a two-dimensional list called indexdata() and the value itself in findata().
In figure 4 is shown the plot of a filtered event. The green line represent the trigger threshold,
while the red one are the values above threshold stored in findata().

At this time the algorithm looks for groups of consecutive indexes in indexdata() and saves in
first() and last() respectively, the index of the values of the first and last signal above threshold
(basically the first and last value to cross the threshold).
The length of first() (or equally the length of last()) is actually the number of pulses present in
the event under examination.

Figure 4: Plot of mean[315] (µA) VS Time (s). The green line is the trigger threshold while the
red one are the values above trigger threshold stored in findata().

2.3 Pulse Contamination Study
As we said before, we consider "good" an event in which all the pulses are not contaminated by
another one that occur in that same event or in the one before. For this reason, to discriminate
"good" event from "bad" event it is necessary to study the eventual contamination between pulses.

Uncompleted Pulses Before starting, the algorithm throws all the event with at least an
incomplete pulse. Such event can occur either when the acquisition stops before the last pulse is
finished (as is the case shown in figure 5a) or the pulse starts before the acquisition, so that we
lose the beginning of the signal (as in the case shown in figure 5b).

4

To know if the acquisition stops before the end of the pulse the algorithm checks if the last value
of the last pulse is still above the trigger threshold. In this case the pulse is not finished and the
entire event is thrown.
If the first value of the first pulse is already above the trigger threshold the pulse started before
the acquisition. Also in this case the entire event is thrown.

(a) (b)

Figure 5: (a) Example of an event with an uncompleted pulse. The red line is the trigger threshold.
The acquisition stops before the pulse is finished so that we lose the last part of the plot. The
entire event is thrown.
(b) Example of an event with two uncompleted pulses. The first pulse starts before the acquisition
so that we lose the first part of the signal, while the last pulse is not finished. Also in this case the
entire event is thrown.

Contamination between pulses in two different events To understand if a pulse is
contaminated by another one that occur in the previous event, the algorithm calculate the slope
of the k points before ‘first’ (=first value above trigger threshold of that specific pulse). At this
time k = 6 but, as the Tsample parameter, it can be optimized after a study of the efficiency of the
algorithm.
If the calculate slope is negative it means that the pulse under consideration occur on the tail
of a previous pulse (as shown in figure 6a), so the algorithm throws the entire event and start
analyzing the next one, while if the slope is non negative it saves the index of the event in a list
called indexgoodevent().

(a) (b)

Figure 6: (a) Example of an event contaminated by a pulse that occurs in the previous event. In
this case the slope is negative and the entire event is thrown. (b) Plot of an event in which the
first pulse is contaminated by the second one. The second pulse occurs on the tail of the first one.
The red line is the trigger threshold, thanks to which we check if the pulse is finished or not. The
second pulse clearly occurs when the first one is still above the threshold.

5

Contamination between pulses within the same event At this time the algorithm
studies the contamination between pulses that occur in the same event, scanning only the ones
included in indexgoodevent(), to analyze just the pulses considered good so far.
A pulse is contaminated if another one occurs before it is finished (this means that another pulse
is present on its tail). For this reason the algorithm check only the tail of the pulse, starting from
the index of the interval that contain the maximum value of the current.
The check is based on the idea that, after the maximum value, the signal decreases, so each value
should be greater than the subsequent one. If this condition is respected until the value of last()
of that specific pulse for all the pulses in the event, the algorithm saves its index in indexresult()
and the corresponding current values in result(), otherwise the entire event is thrown. Figure 6b
shows an event in which the first pulse is contaminated by the second one, that occurs on its tail.
In figure 7 is plotted an event that is considered good so far, as every pulse starts and ends within
the acquisition frame and no pulse in contaminated by any of the two ways.

Figure 7: Plot of mean[201]. Example of an event that can be considered good so far. Both the
pulses in this event start and end within the acquisition frame, and no one of them is contaminated.

At the end, indexresult() contain the indexes of the clean events (the events in which at least a pulse
is present, all the pulses start and end within the acquisition frame and with no contamination),
while in result() are stored the current values of each of these event. We can now study the
efficiency of this algorithm to also select the optimal k e Tsample parameters.

3 Study of the Efficiency
I decided to study the efficiency of this algorithm with both real and fake data.
For real data, I looked at the plots of a sample of events as they are taken by the detector (res()),
and I selected by hand the pulses that, to me, were good and bad. I stored the indexes of the
events in two different lists and I used the algorithm on my selected events.
To study the efficiency with fake data, I implemented an algorithm that produce data following
our pulse distribution and I used the algorithm on different sample size to obtain, at the end, the
efficiency curve.

3.1 Real Data
Tables 1a and 1b summarize the real data efficiency for two different sample size: in table 1a
sample size is 100 for both bad and good events, while in table 1b the sample size for the bad
events is 280 (sample size for good event is still 100). Results are plotted in figure 8.

Sample = 100 Good Bad
Good 50% 50%
Bad 17% 83%

(a) Table of the efficiency for real data
with sample size good and bad = 100.

Sample Bad = 280 Good Bad
Good 50% 50%
Bad 20.7% 79.3%

(b) Table of the efficiency of the algorithm
when using real data with sample size good
= 100 and sample size bad = 280.

6

Figure 8: Plot of the efficiency of the algorithm using real data.

3.2 Fake Data
Table 1 summarizes the efficiency of the algorithm when using fake data. As we can see, the
reasonable sample size to study the efficiency is 1000, as the fluctuations of the results decrease.
The results are shown in figure 9.

Sample = 100 Good Bad
Good 98% 2%
Bad 40% 60%

(a)

Sample = 500 Good Bad
Good 98.8% 1.2%
Bad 72% 28%

(b)

Sample = 1000 Good Bad
Good 99.2% 0.8%
Bad 71.7% 28.3%

(c)

Table 1: Table of the efficiency for fake data with sample size = 100, 500 and 1000.

Figure 9: Plot of the efficiency of the algorithm using fake data.

4 Conclusion
As we can see from the results of the study of the efficiency, the sample size used to study the real
data was not enough and, approximately, 1000 events are needed to have a reasonable result.
In the study of the efficiency using fake data, the number of bad event flagged as good is pretty
high. This because the algorithm that produced the data is simple, the data produced are approx-
imate and do not follow the true data trend perfectly.

As a result, both the algorithms can be largely improved, both to better produce fake data and
properly study the efficiency, and to better discriminate valid events from spurious ones.
To have a better efficiency we can:

7

1. Change free parameters: the temporary threshold that we use to study the noise distribution,
as well as the definition of the trigger threshold itself and the two free parameters Tsample

(sample period in which we calculate the moving average) and k (number of intervals in which
we calculate the slope) can be changed and optimized.

2. Re-define last(): the list last() is filled with the last value of each pulse that cross the trigger
threshold, but we cannot really know if at that time the pulse is finished or not. If it is not,
another pulse can occur at the very end of its tail (after the value stored in last()), as in the
case shown in figure 10, and the algorithm will not be able to flag that pulse as contaminated.
To overcome this, we might define the members of last() starting from the ones of first() (list
in which it is stored the index of the interval that contain the first value above the trigger
threshold of each pulse of the event), taking into consideration the time-lenght of a generic
pulse.

Figure 10: Example of event in with the second pulse occurs at the very end of the tail of the
first one. The algorithm is not able to flag this event as "contaminated" and the event is stored in
indexgoodevent().

3. Target better the uncompleted pulses: the algorithm compares to the edges of the acquisition
frame only the really first or last value of the pulse, but, for some reasons, it can happen that,
even if the pulse in not finished, the last value of the event is below the trigger threshold and
the event is then flagged as "good". So, as the algorithm is today, it is not able to detect all
the uncompleted pulses and sometimes bad data are flagged as good data. This study should
be implemented to be sure all the pulses that we have start and finish within the acquisition
frame.

4. Split good traces: as the algorithm is today, if a pulse is contaminated or if it is not finished,
we throw the entire event. But this is not what we want at the end. If, for example, three
pulses are present in a event and two of them are contaminated, we can still save the third
one, and study that one. We have a lot of pileup, what we want is to either reject a single
pileup or split good traces into independent events if separated by some minimum distance.
Figure 11 shows an event in which the first and second pulses can be considered good, while
the third one should be flagged as bad as it is uncompleted.

Figure 11: Example of an event in which the first and second pulses can be flagged as good, while
the third one should be thrown as it is uncompleted.

8

	The SuperCDMS SNOLAB Experiment
	The Project
	Trigger System

	The Code
	Study of the noise distribution
	Low-Pass Filtering and Moving Average
	Pulse Contamination Study

	Study of the Efficiency
	Real Data
	Fake Data

	Conclusion

