
IMPLEMENTATION OF A TRIGGER
ALGORITHM FOR SUPERCDMS

Chiara Magliocca

Supervisor : Noah Alexander Kurinsky

What is the aim
The aim of this algorithm is to select the data that we can consider valid for a
further analysis, starting from a sample of data in ADC values taken directly
by the detector without any hardware trigger.

The algorithm discriminate good pulses from noise thanks to a threshold,
set after an accurate study of noise distribution, and examine the eventuality
of contamination between pulses that occur in the same event or in two
different ones.

The algorithm gives, as a result, two two-dimensional lists:

o includes the current values of the events that passed all the filters and are
considered "good" so far

o includes the indexes of these events

I then studied the efficiency of the algorithm, that, as a result, can be greatly
improved.

An event can be considered “GOOD” if:

o It contains at least one pulse

oAll the pulses start and end within the acquisition frame

oNo pulse is contaminated by another one that occur in the same event

oNo pulse is contaminated by another one that occur in the previous
event

THE CODE

After reading the ADC values data from a file, the
algorithm stores them in a two-dimensional list called
res(). Data are then converted from ADC values to
current, centered to zero and reversed (so that the pulses
will be positive and the subsequent studies simplified)
and stored in a list called pulse().

Study of the Noise Distribution

An event can be considered valid for a further analysis if at least a pulse is present. But how can we
know if that pulse is actually a signal or just noise?

Easy : we need to set a threshold and discriminate pulses from noise.

Study the noise distribution the threshold will be set at 3σ

We start selecting all the events that contain no pulses, but just noise. To do this, a temporary threshold
is set to 0.02 μA (this value has been chosen after an analysis of a sample of events with both noise and
signal). The indexes of the events that contain just noise are then stored in noise(), while the events that
contain both noise and signal are stored in nonoise().

At this time the standard deviation (σ) of each just-noise event is calculated to determine, at the end, the
mean value of all of these

𝑡ℎ𝑟 = 3 ∗ 𝑚𝑒𝑎𝑛 ≈ 0.005

Trigger

Threshold

Low-Pass Filtering
What we need to do now is low-pass filter the pulse to get rid of high-frequency information which
are not actually useful for this algorithm. To do this, we calculate the moving average.

Each event is divided into intervals of fixed length (=sample period) T_sample (chosen to be 0.002 s)
and the mean value of the signal in each interval is calculated (to clean it up from additional noise and
smooth it).

T_sample parameter can be change to optimize the algorithm, but, to understand its optimal value, an
analysis of the algorithm’s efficiency is needed.
 The mean values of the intervals are stored in a two-dimensional list mean[i][j], where i is the index
of the event and j the one of the interval.

From now on, we will always use the filtered pulses.

Is now time to check the number of pulses
present in each event.
To do so, the algorithm scans all the events
and, in each event, checks whether a value
exceeds the trigger threshold (the one that
was previously fixed). If it does, it saves the
index of the interval that include that value in
a two-dimensional list called indexdata() and
the value itself in findata().
Then it looks for groups of consecutive
indexes in indexdata() and saves in first() and
last() respectively, the index of the values of
the first and last signal above threshold
(basically the first and last value to cross the
threshold).

The length of first() (or equally the length
of last()) is actually the number of pulses
present in the event under examination.

Trigger

Threshold

Plot of Mean[315]

Is now time to check the number of pulses
present in each event.
To do so, the algorithm scans all the events
and, in each event, checks whether a value
exceeds the trigger threshold (the one that
was previously fixed). If it does, it saves the
index of the interval that include that value in
a two-dimensional list called indexdata() and
the value itself in findata().
Then it looks for groups of consecutive
indexes in indexdata() and saves in first() and
last() respectively, the index of the values of
the first and last signal above threshold
(basically the first and last value to cross the
threshold).

The length of first() (or equally the length
of last()) is actually the number of pulses
present in the event under examination.

Findata[315]

Indexdata[315]

Plot of Mean[315]

Is now time to check the number of pulses
present in each event.
To do so, the algorithm scans all the events
and, in each event, checks whether a value
exceeds the trigger threshold (the one that
was previously fixed). If it does, it saves the
index of the interval that include that value in
a two-dimensional list called indexdata() and
the value itself in findata().
Then it looks for groups of consecutive
indexes in indexdata() and saves in first() and
last() respectively, the index of the values of
the first and last signal above threshold
(basically the first and last value to cross the
threshold).

The length of first() (or equally the length
of last()) is actually the number of pulses
present in the event under examination.

Last[315][1]

First[315][1]

Plot of Mean[315]

Pulse Contamination Study

As we said before, we consider "good" an event in which all the pulses are
not contaminated by another one that occur in that same event or in the one
before. For this reason, to discriminate "good" event from "bad" event it is

necessary to study the eventual contamination between pulses.

Before starting, the algorithm throws all the event with at least an uncomplete pulse.

Such event can occur when:

oThe acquisition stops before the last pulse is finished We check if the last value of the last pulse is
still above the trigger threshold. In this case the pulse is not finished and the entire event is thrown.

oThe pulse starts before the acquisition, so that we lose the beginning of the signal We check if the
first value of the first pulse is already above the trigger threshold. In this case the pulse started before
the acquisition and the entire event is thrown.

Is a pulse contaminated by another one
that occured in the previous event ?

To understand if a pulse is contaminated by
another one that occur in the previous event,
the algorithm calculate the slope of the k points
before ‘first’ (=first value above trigger
threshold of that specific pulse). At this time
k = 6.

o slope < 0 : it means that the pulse under
consideration occur on the tail of a previous
pulse the algorithm throws the entire event
and start analyzing the next one

o slope ≥ 0 the algorithm saves the index of
the event in a list called indexgoodevent().

Is a pulse contaminated by another one
that occur in the same event ?

The algorithm scans only the events included in
indexgoodevent(), to analyze just the pulses
considered good so far.

A pulse is contaminated if another one occurs
before it is finished (another pulse is present on
its tail) the algorithm check only the tail of
the pulse, starting from the index of the interval
that contain the maximum value of the current.

After the maximum value, the signal decreases, so
each value should be greater than the subsequent
one. If this condition is respected until the value
of last() of that specific pulse for all the pulses in
the event, the algorithm saves its index in
indexresult() and the corresponding current
values in result(), otherwise the entire event is
thrown.

At the end

 indexresult() contain the indexes of the filtered events (the events in which at least a pulse is
present, all the pulses start and end within the acquisition frame and with no contamination)

 result() stores the current values of each of these event.

We can now study the efficiency of this algorithm to also select the

optimal k e T_sample parameters.

STUDY OF
THE EFFICIENCY

I decided to study the efficiency of this algorithm with:

Real Data

I looked at the plots of a sample of

events as they are taken by the detector

(res ()), and I selected by hand the

pulses that, to me, were good and bad. I

stored the indexes of the events in two

different lists and I used the algorithm

on my selected events.

Fake Data

I implemented an algorithm that produce

fake data that follow the real data

distribution. Noise and contamination

between pulses within the same acquisition

frame are present.

Real Data

Sample Good Events = 100 Sample Bad Events = 100

Good Bad

Good 50 % 50%

Bad 17% 83%

Sample Good Events = 100 Sample Bad Events = 280

Good Bad

Good 50% 50%

Bad 20.7% 79.3%

Output

Output
In

p
u
t

In
p

u
t

Plot of the Efficiency – Real Data Study

Fake Data

Sample Events = 500

Good Bad

Good 98.8% 1.2%

Bad 72% 28%

Sample Events = 1000

Good Bad

Good 99.2% 0.8%

Bad 71.7% 28.3%

Sample Events = 100

Good Bad

Good 98% 2%

Bad 40% 60%

Plot of the Efficiency – Fake Data Study

CONCLUSIONS

The algorithm can be improved !

But .. In which way ?

• Changing the Parameters

The two parameters

1. T_sample (sample period in which we calculate the moving average)

2. k (number of intervals in which we calculate the slope)

can be changed and optimized to improve the efficiency of the algorithm.

• Last ()
The list last() is filled with the last
value of each pulse that cross the
trigger threshold, but we cannot really
know if at that time the pulse is
finished or not. If it is not, another
pulse can occur at the very end of its
tail (after the value stored in last()) and
the algorithm will not be able to flag
that pulse as contaminated.

Re-definition of last() starting from first() , taking into

consideration the time-lenght of a generic pulse.

• Uncompleted Pulses

As the algorithm is today, it is not able to detect all the uncompleted pulses Bad data
flagged as good data

This study should be implemented to be sure all the pulses that we have start and finish
within the acquisition frame.

• Split Good Traces

Now, if a pulse is contaminated or if it is not
finished, we throw the entire event. But this is
NOT what we want at the end! If, for example,
three pulses are present in a event and two of
them are contaminated, we can still save the
third one, and study that one.

We have a lot of pileup, what we want is to
either reject a single pileup or split good traces
into independent events if separated by some
minimum distance.

• Split Good Traces

Now, if a pulse is contaminated or if it is not
finished, we throw the entire event. But this is
NOT what we want at the end! If, for example,
three pulses are present in a event and two of
them are contaminated, we can still save the
third one, and study that one.

We have a lot of pileup, want we want is to
either reject a single pileup or split good traces
into independent events if separated by some
minimum distance.

THANK YOU !

