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Abstract

We present a study of tranverse-momentum distributions for vector boson production at the
Tevatron energies. The analysis is performed with the software DYqT and DYRes that compute
Quantum-Cromo Dynamics (QCD) corrections respectively up to NLO+NNLL and NNLO+NNLL.
The computation encodes vector boson spin correlations, finite-width effects and a full dependence
on the final-state lepton(s) kinematics. We report a brief description of the resummation approach
involved in the computation and focus on the variation of the renormalization, factorization and
resummation scales. We finally compare results obtained with the following PDFs sets: MSTW2008,
MSTW2004, NNPDF3.0 and NNPDF2.3.
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1 Introduction

The production of vector bosons at hadron colliders provides an important test for the Standard Model
(SM). It allows accurate calculations of fundamental parameters along with specific constraints on new
physics. It is thus a leading goal to reach strict theoretical predictions for Drell-Yan (DY) mechanism
[7] which is a benchmark for studying collider physics. This requires the evaluation of QCD correc-
tions, which can be perturbatively computed as series of exponential in the strong coupling constant
αs. QCD corrections have achieved the next-to-next-to-leading order (NNLO) in perturbation theory
for the computation of the total cross section of vector boson decays as well as rapidity distributions
in [8, 9, 10, 22, 12]. Electroweak radiative corrections (EW) are also available for both W and Z/γ∗.

A staple observable is the transverse-momentum (pT ) distribution of vector boson. It is essential
in order to obtain an accurate measurement of W boson mass (MW ). QCD corrections are known
at O(α2

s) order in the region of large pT (pT ≈ mV ). Recently the computation for vector boson
production in addition of a jet has performed in [13, 14] at the order O(α3

s). In the region where
pT ≈ mV , mV being the mass of the vector boson, the QCD perturbative series is controlled by a
small expansion parameter, αs(mV ), and fixed-order calculations are theoretically justified. In this
region, the QCD radiative corrections are known up to NNLO. In the small pT region (pT � mV ),
the convergence of the fixed-order expansion is spoiled, since the coefficients of the perturbative series
are enhanced by powers of large logarithmic terms, αns lnm(m2

V /p
2
T ), where 1 ≤ m ≤ 2n−1. To obtain

reliable predictions, these terms have to be resummed to all perturbative orders.

The method to systematically perform all-order resummation of classes of logarithmically-enhanced
terms at small pT is known [15, 16, 17]. The resummed and fixed-order procedures at small and large
values of pT can then be matched at intermediate values of pT , to obtain QCD predictions for the
entire range of transverse momenta. Studies of the vector boson pT distribution have been performed
by combining resummed and fixed-order perturbation theory at various levels of accuracy . A first
method to perform resummation has been discussed in [18]. The resummed distribution is factorized
in terms of a universal transverse-momentum form factor and a single process-dependent hard func-
tion. In the small-pT region, the logarithmic terms of the form factor are systematically resummed
in exponential form. A constraint of perturbative unitarity is imposed on the resummed terms, to
the purpose of reducing the effect of unjustified higher-order contributions at large values of pT and,
especially, at intermediate values of pT .The resummed and fixed-order calculations, which are valid
at small and large values of pT , respectively, can be consistently matched at intermediate values of
pT to achieve a uniform theoretical accuracy for the entire range of transverse momenta.

Hadron colliders experiments can directly measure only the decay products of vector bosons in one
finite kinematical region. Therefore, it is important to include the vector boson leptonic decay in the
theoretical calculations, by retaining the kinematics of the final-state leptons. In this way it is possible
to obtain predictions for the transverse-momentum distribution of the measured leptons. This is spe-
cially relevant in the case of W production where, because of the final-state neutrino, the transverse
momentum of the vector boson can only be reconstructed through a measure of the hadronic recoil.
Moreover, in both cases of W and Z production, the inclusion of the leptonic decay allows applying
kinematical selection cuts, thus providing a more realistic simulation of the actual experimental anal-
ysis. The method we use combines resummation at the next-to-next-to-leading logarithmic (NNLL)
accuracy in the small-pT region with the fixed-order results at O(α2

s) in the large-pT region. This leads
to a calculation with uniform theoretical accuracy from small to intermediate values of pT . Moreover,
at large values of pT the calculation implements a unitarity constraint that guarantees to exactly
reproduce the NNLO value of the total cross section after integration over pT .

The programs used for pT spectrum production are DYRes and DYqT. These High-Energy QCD
softwares allow respectively NNLL+NNLO and NLO+NNLL calculations including leptonic decay of
the vector boson with the corresponding spin correlations. The spin of the vector boson dynamically
correlates the decaying lepton momenta with the transverse momentum acquired by the vector boson
through its production mechanism. Therefore, the inclusion of the full dependence on the lepton de-
cay variables in the resummed calculation requires a theoretical discussion on the treatment of the pT
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1.1

recoil due to the transverse momentum of the vector boson. DYRes treats the pT recoil by introducing
a general procedure that is directly applicable to pT resummed calculations for generic production
processes of high-mass systems in hadron collisions.

This work is organized as follows: we discuss W along with Z pT spectra using the resummation
method of DYRes firstly performed in [19] for the LHC. We present the theoretical approach for vector
boson resummation introduced in [20], discuss some physical constraints at CDF in order to introduce
our phenomenological approach. Finally, we present quantitative results.

1.1 W boson production and decay at the Tevatron

The analysis we present is oriented to a precise measurement of W boson mass (MW ) with the Collider
Detector at Fermilab (CDF). It is known that the spontaneous symmetry-breaking, which is in the
Standard Model (SM) the Higgs mechanism, states that MW in the on-shell scheme can be estimated
as follows

M2
W =

~3π

c

αEM√
2GF (1−M2

W /M
2
Z)(1 + ∆r)

(1)

where αEM is the electromagnetic coupling at Q = MZc
2, GF is the Fermi weak coupling extracted

from the muon lifetime measurement, MZ is the Z-boson mass, and ∆r = 3.58% includes all
radiative corrections. In the SM, the electroweak radiative corrections are dominated by loops
containing top and bottom quarks, but also depend logarithmically on the mass of the Higgs boson
MH through loops containing the Higgs boson. Loops in the W boson propagator contribute to the
correction ∆r, defined in the following expression for the W -boson mass MW in the on-shell scheme
[1].

Following the discovery of the W boson in 1983 at the UA1and UA2 experiments [2], measurements
of MW have been performed with increasing precision using

√
s = 1.8 TeV pp collision at the CDF [3]

and D0 [4] experiments (RUN 1). The CDF [5] and D0 [6] (Run 2) at
√
s = 1.96 TeV have produced

the combined world measurement to MW = 80385±15 MeV/c2. The measurement MW = 80385±19
MeV/c2 at the CDF is considered as the world best value to date.

1.1.1 MW measurement at the Tevatron

In pp collisions at
√
s = 1.96, W bosons are primarily produced via s-channel annihilation of valence

quarks with a smaller contribution from sea-quark annihilation. These initial-state quarks radiate glu-
ons that can produce hadronic jets in the detector. The W boson decays either to a quark-antiquark
pair ( qq′) or to a charged lepton and neutrino (lν). The hadronic decays are overwhelmed by back-
ground at the Tevatron due to the high rate of quark and gluon production through QCD interactions.
Decays to τ leptons are not included since the momentum measurement of a τ lepton is not as precise
as that of an electron or muon. The mass of the W boson is therefore measured using the decays
W± → l±νl, (l = e, µ), which have about 22% total branching fraction. Samples selected with the
corresponding Z-boson decays, Z0 → l+l−, are used for calibration.
The CDF experiment uses a right-handed coordinate system in which the z axis is centered at the
middle of the detector and points along a tangent to the Tevatron ring in the proton-beam direction.
The remaining Cartesian coordinates are defined with +x pointing outward and +y upward from the
Tevatron ring, respectively. Transverse quantities such as transverse momentum are projections onto
the (x, y) plane. The interacting protons and antiprotons have negligible net transverse momentum.
Electron energy measured in the calorimeter is denoted as E and the corresponding transverse momen-
tum ET is derived using the direction of the reconstructed particle trajectory (track) and neglecting
the electron mass. For transverse-momentum conservation , the transverse-momentum of the neutrino
pνT in W leptonic decay is evaluated as pνT = −plT − uT , where plT is the transverse-momentum of the
charged lepton and uT the recoil - defined as the negative of the transverse-momentum of the vector
boson.
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1.1

1.1.2 Measurement strategy at CDF

The measurement is performed by fitting for MW using three transverse quantities that do not depend
on the unmeasured longitudinal neutrino momentum: plT , pνT , and the transverse-mass

mT =
√

2plT p
ν
T (1− cos ∆φ) (2)

where ∆φ is the angle between the neutrino and charged lepton momenta in the transverse plane.
Candidate events are selected with uT � plT , so the neutrino momentum can be approximated as
pνT ≈ plT + u|| and the transverse mass can be approximated as mT ≈ 2plT + u||. These relations
demonstrate the importance of modeling u|| accurately relative to other recoil components. They
also demonstrate that the three fit variables have varying degrees of sensitivity to the modeling of
the recoil and the pT of the W boson. High precision determination of plT is crucial to this
measurement: a given fractional uncertainty on plT translates into an equivalent fractional
uncertainty on MW . The absolute scale of the calibrated track momentum is tested by measuring
the Z-boson mass in Z0 → µ+µ− decays and comparing it to the known value. After including the
MZ measurement, the calibration is applied to the measurement of MW in W± → µ±νµ decays and
in the procedure used for the calibration of the electron energy scale in the calorimeter. Since W and
Z bosons are produced from a similar initial state at a similar energy scale, the hadronic recoil is
similar in the two processes. To model the detector response to this recoil, a heuristic description of
the contributing processes is developed and the model parameters are tuned using
fully-reconstructed Z0 → µ+µ− data. The inclusive pT distribution of produced W bosons is also
tuned using Z0 → µ+µ− data by combining the measured pT distribution of Z bosons with a precise
calculation of the relative pT distributions of W and Z bosons. As with the fits for MZ , a single
blinding offset in the range [−75, 75] MeV is applied to all MW fits for the course of the analysis.
This offset differs from that applied to the MZ fits. No changes are made to the analysis once the
offsets to the MW fit results are removed.

6



2.1

2 Trensverse-momentum Resummation

This section is devoted to a brief recall of resummation formalism applied to the production of vector
boson. The formalism we expose is implemented in both DYRes and DYqT.

2.1 Resummation formalism for Vector-Boson Production

The bulk of the vector boson cross section is produced in the small-pT region, where the reliability of
the fixed-order expansion is spoiled by the presence of large logarithmic corrections of soft and collinear
origin. To obtain reliable predictions, these logarithmically-enhanced terms have to be evaluated and
systematically resummed to all orders in perturbation theory . In recent years, the resummation of
small- pT logarithms has been reformulated by using Soft Collinear Effective Theory (SCET) methods
and transverse-momentum dependent (TMD) factorization.

Let us consider the inclusive hard-scattering process

h1(p1) + h2(p2) −→ F (M,pT ) +X, (3)

where h1 and h2 forms the hadronic initial state with momenta p1 and p2, F (M,pT ) is a detected
final state and X is arbitrary. The observed final state F is a generic system of non-QCD partons
such as one or more vector bosons. We do not consider the production of strongly interacting
particles (hadrons, jets, heavy quarks, ...), since in this case the resummation formalism of small-pT
logarithms has not yet been fully developed.

According to the QCD factorization theorem the corresponding transverse- momentum differential
cross section dσ̂F /dp

2
T can be written as

dσ̂F
dp2
T

(pT ,M, s) =
∑
a,b

∫ 1

0

dx1

∫ 1

0

dx2fa/h1
(x1, µ

2
F )fa/h2

(x2, µ
2
F )
dσ̂Fab
dp2
T

(
(pT ,mV , ŝ, αs(µ

2
R), µ2

R, µ
2
F )
)
,

(4)

where fa/h1
(x1, µ

2
F ) and fa/h2

(x2, µ
2
F ) are the parton densities of the colliding hadrons, µF and µR

respectively the factorization and renormalization scales, dσ̂Fab/dp
2
T the partonic cross section, s the

center-of-mass energy, ŝ = x1x2s the partonic center-of-mass energy. The partonic cross section is
computable in QCD perturbation theory as a power series expansion in αS . We assume that at the
parton level the system F is produced so that the corresponding cross section is dσ̂F /dp

2
T (0) ≈ δ(p2

T )
at the lower order.

As evinced by the perturbation theory, the higher-order perturbative contributions to the partonic
cross section dσ̂Fab/dp

2
T contain logarithmic terms of the type lnm(m2

V /p
2
T ) that become large in the

small-pT region. Therefore, we introduce the following decomposition of the partonic cross section in
the Eq. 4

dσ̂Fab
dp2
T

=
dσ̂

(res.)
Fab

dp2
T

+
dσ̂

(fin.)
Fab

dp2
T

, (5)

where the logarithmical terms are contained in dσ̂
(res.)
Fab . at small pT , and has to be evaluated by

resumming them to all orders in αS . The second term dσ̂
(fin.)
Fab is free of these contributions, thus can

be computed through a matrix element approach. To be precise, we define the so-called ”finite” part
of the total cross section as follows

lim
PT→0

∫ P 2
T

0

dp2
T

[
dσ̂

(fin.)
Fab

dp2
T

,

]
f.o.

= 0, (6)
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2.1

where the right-hand side tends to zero order-by-order in perturbation theory.

In summary, the pT distribution in Eq. 4 is evaluated, in practice, by replacing the partonic cross
section on the right-hand side as follows

dσ̂Fab
dp2
T

−→

[
dσ̂

(res.)
Fab

dp2
T

]
l.a.

+

[
dσ̂

(fin.)
Fab

dp2
T

]
f.o.

, (7)

where we compute the truncation at a given order in perturbation theory. Note that the ”res.” part
becomes relevant at low-pT , whereas the fixed-order component dominates at large-pT . One of the
aim of this review is to present how these two sides are involved in the computation and affect the
total cross section. The software DYRes allows the computation of fixed-order as well as resummed
part separately, then they are combined. The two components have to be consistently matched in
order to obtain a suitable theoretical accuracy all over the range of pT .

This matching procedure guarantees that the replacement in Eq. 7 retains the full information of
the perturbative calculation up to the specified fixed order plus resummation of logarithmically- en-
hanced contributions from higher orders. The matching guarantees the replacement is perturbatively
coherent1.Thus, the small-pT along with large-pT are combined without double counting.

The resummed contributions that are present in the term of Eq. 7 are necessary and fully justified
at small-pT . Nonetheless they can lead to sizable higher-order perturbative effects also at large-pT ,
where the small-pT logarithmic approximation is not valid. To reduce the impact of these unjustified
higher-order terms, we require that they give no contributions to the most basic quantity, namely
the total cross section, that is not affected by small-pT logarithmic terms. We thus impose that the
integral over pT of Eq. 7 exactly reproduces the fixed-order calculation of the total cross section.
Since dσ̂(fin.) is evaluated in fixed-order perturbation theory, the perturbative constraint on the total
cross section is achieved by imposing the following condition∫ ∞

0

dp2
T

[
dσ̂

(res.)
Fab

dp2
T

]
l.a.

=

∫ ∞
0

dp2
T

[
dσ̂

(res.)
Fab

dp2
T

]
f.o.

(8)

Since resummed and fixed-order perturbation theory controls the small-pT and large-pT regions
respectively, the total cross section constraint mainly acts on the size of the higher-order
contributions introduced in the intermediate-pT region by the matching procedure.

A distinctive feature of the formalism illustrated as far is that we implement perturbative QCD
resummation at the level of the partonic cross section. In the factorization formula 4, the parton
densities are thus evaluated at the factorization scale µF , as in the customary perturbative calcula-
tions at large pT . Although we are dealing with a process characterized by two distinct hard scales,
pT and mV , the dominant effects from the scale region pT � mV are explicitly taken into account
through all-order resummation. Therefore, the central value of µF and µR has to be set equal to
mV , the ‘remaining’ typical hard scale of the process. Then the theoretical accuracy of the resummed
calculation can be investigated as in customary fixed-order calculations, by varying µF and µR around
this central value.

2.1.1 The resummed component at NNLL

In this section we specialize the resummed component in Eq. 7 at the NNLL. The resummation
procedure has to be carried out in the impact- parameter space, to correctly take into account the
kinematics constraint of transverse-momentum conservation. A fully exhaustive deduction of the
argument has been performed in [20]. In this review we report the main result at NNLL which is
stated as follows: the resummed component of the transverse-momentum cross section is obtained by

1the fixed-order truncation of the right-hand side of Eq. 5 exactly reproduces the customary fixed-order truncation
of the partonic cross section in Eq. 4.
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2.1

performing the inverse Fourier (Bessel) transformation with respect to the impact parameter b by the
following formula

dσ̂
(res.)
Fab

dp2
T

(
pT ,mV , ŝ, αs(µ

2
R), µ2

R, µ
2
F

)
=
m2
V

ŝ

∫
d2b

4π
eibpTWF

ab

(
b,mV , ŝ, αs(µ

2
R), µ2

R, µ
2
F

)
(9)

The perturbative and process-dependent factor WF involves the all-order dependence on the large
logarithms ln m2

V b
2 at large b, which correspond to the pT -space terms lnm2

V /pT that are
logarithmically enhanced at small pT . The resummation of WF is computed as exponential series of
a function G depending from µR, µF and the so-called resummation scale Q. Variations of these
scales could be used to estimate theoretical uncertainties for logarithmic corrections. Usually, G is
expressed as follows

GN
(
αS , L,m

2
V /µR,m

2
V /Q

2
)

=

∞∑
n=4

(αS
π

)n−2

g
(n)
N

(
αSL,m

2
V /µ

2
R,m

2
V /Q

2
)

(10)

where, defining the parameter b0 conventionally, L is stated as follows

L
.
= ln

(
b2Q2

b20

)
(11)

Thus, the resummation at NNLL is stated in terms of a specific computation of gN at a given order

in perturbation theory. The NNLL contribution is given evaluating g
(3)
N as follows

g
(3)
N

(
αSL,

m2
V

µ2
R

,
m2
V

Q2

)
= −A

(3)

2β2
0

λ2

(1− λ)2
−B

(2)

N

β0

λ

1− λ
+
A(2)β1

β0

(
λ

2

(3λ− 2)

2(1− λ)2
− (1− 2λ) ln(1− λ))

(1− λ)2

)
+

+
B

(1)

N β1

β2
0

(
λ

1− λ
+

ln(1− λ)

1− λ

)
− A(1)

2

λ2

(1− λ)2
ln2 Q

2

µ2
R

+

+ ln
Q2

µ2
R

(
B

(1)
N

λ

1− λ
+
A(2)

β0

λ2

(1− λ)2
+A(1) β1

β0

(
λ

1− λ
+

1 + 2λ

(1− λ)2
ln(1− λ)

))
+

+A(1)

(
β2

1

2β2
0

1− 2λ

(1− λ)2
ln2(1− λ) + ln(1− λ)

[
β0β2 − β2

1

β4
0

+
β2

1

β4
0(1− λ)

+
(
β0β2(2− 3λ) + β2

1λ
)])

(12)

where we define the following parameters

λ =
1

π
β0αS(µ2

R)L, (13)

B
(n)

N = B̃
(n)
N +A(n) ln

m2
V

Q2
, (14)

and the βn functions are the coefficients of the following expansion

d lnαS(µ2)

d lnµ2
= β(αS(µ2)) = −

∞∑
n=0

βn

(αS
π

)n+1

. (15)

Note that the g
(3)
N function is singular in λ = 1. These singularities, which are related (when

b ∼ 1/ΛQCD) to the divergent behavior of the perturbative running coupling αS/π near the Landau
pole, signal the onset of non-perturbative phenomena at very large values of b or, equivalently, in the
region of very small transverse momenta.This type of singularities is a common feature of all-order
resummation formulae of soft-gluon contributions. Within a perturbative framework, these
singularities have to be regularized.
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2.1

2.1.2 The finite component at NNLO

The finite component dσ̂
(fin.)
Fab of the transverse-momentum cross section is computed at a given pertur-

bative order in αS . As discussed in sec. 2.1 and 2.1.1 , the finite component dσ̂
(fin.)
Fab does not contain

any perturbative contributions proportional to δ(p2
T ) (these contributions and all the logarithmically-

enhanced terms at small-pT are included in dσ̂
(res.)
Fab ). At a given order it is just evaluated by inverting

Eq. 7 as follows [
dσ̂

(res.)
Fab

dp2
T

]
(order)

=

[
dσ̂Fab
dp2
T

]
(order)

−

[
dσ̂

(fin.)
Fab

dp2
T

]
(f.o.)

, (16)

where ”order” indicates a given order in perturbation theory. The fixed-order truncation of the
resummed part is obtained by perturbatively expanding the resummed component dσ̂(res.) in Eq. 9.
The contributions [dσ̂](f.o.) on the right-hand side of Eq 16 are obtained by computing the
perturbative expansion for the partonic cross section at a given order. To explain this purpose we
define

WF
ab

(
z, L̃,

m2
V

µ2
R

,
m2
V

µ2
F

,
m2
V

Q2

)
=
∑
c

σ
(0)
cc,F (αS ,mV ) {δcaδcb(1− z)}+

+σ
(0)
cc,F (αS ,mV )

∞∑
n=1

{(αS
π

)n [
Σ̃
F (n)
cc→ab

(
z, L̃,

m2
V

µ2
R

,
m2
V

µ2
F

,
m2
V

Q2

)]}
+

+σ
(0)
cc,F (αS ,mV )

{(αS
π

)n [
HF (n)
cc→ab

(
z, L̃,

m2
V

µ2
R

,
m2
V

µ2
F

,
m2
V

Q2

)]}
(17)

where z = m2
V /ŝ, σ

(0)(αS ,mV ) = αpcF σ(LO)(mV ) and, in general, the power pcF depends on the
lowest-order partonic subprocess cc→ F . WF

ab is the resummed cross section on the right-hand side
of Eq. 9. Note, however, that Eq. 17 depends on the resummation scale Q2. The dependence on the
resummation scale has been introduced above through the replacement in Eq 7. The perturbative
coefficient Σ̃F (n) is a polynomial of 2n degree. At the NNLO we get the following result(αS

π

)n m2
V

ŝ

∑
c

σ
(0)
cc,F (αS ,mV )HF (2)

cc→ab

(
z, L̃,

m2
V

µ2
R

,
m2
V

µ2
F

,
m2
V

Q2

)

=
[
σ̂tot
Fab

]
NNLO

−
[
σ̂tot
Fab

]
NLO
−
∫ ∞

0

dp2
T

[
dσ̂

(fin.)
Fab

dp2
T

]
NLO

−

[
dσ̂

(fin.)
Fab

dp2
T

]
LO

. (18)

We will focus on Eqs. 18 and 12 for our studies.
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3.1

3 DYRes and DYqT computational results

This section is devoted to numerical simulations along with comparisons of DYRes and DYqT W pT
spectra. Firstly, we report a brief description of the main characteristics of the software as well as
structural differences. We will continue the analysis presenting DYRes and DYqT results. Finally, we
compare distributions and discuss outstanding items concerning simulations.

3.1 DYRes and DYqT pT Distributions: differences between programs

The DYqT program computes the transverse-momentum spectrum of Drell–Yan lepton pairs with high
invariant mass (M) produced via vector boson V (V = W±, Z − γ) decay in pp or pp collisions. The
DYqT calculation combines the fixed-order result at high values of pT up to O(α2

S) with the resum-
mation of the logarithmically enhanced contributions at small values of pT (pT � M) up to NNLL
accuracy. The rapidity of the vector boson and the leptonic kinematical variables are integrated over
the entire kinematical range.
The program performs the resummation of the large logarithmic contributions that appear in the
region where the vector boson transverse-momentum is much smaller than the invariant mass M. The
program can be used at NLL+LO and NNLL+NLO accuracy. At NLL+LO accuracy the resummed
part is evaluated at NLL accuracy, and the fixed-order part is evaluated at LO (it is given by the
O(αS) terms with ‘V + 1 parton’ in the final state). At NNLL+NLO accuracy the resummed part
is evaluated at NNLL accuracy, and the fixed-order part is evaluated up to NLO (it includes all the
terms with ‘V + 1 parton’ and ’V + 2 partons’ up to O(α2

S)) at NLO (V + 1 or 2 partons). At
NNLL+NLO (NLL+LO) accuracy the DYqT calculation exactly recovers the total cross section at
NNLO (NLO) upon integration over pT .

The DYRes program is a Monte-Carlo-based code that uses VEGAS integration system in order
to compute the total cross section of vector boson leptonic decay in pp or pp collisions at a given
center-of-mass energy and perturbative order in QCD.
DYRes combines the calculation of the cross section up to NNLO with the resummation of the
logarithmically-enhanced contributions at small transverse momenta up to NNLL in QCD pertur-
bation theory. The program includes Z − γ interference, finite-width effects and the leptonic decay
of the vector boson with the corresponding spin correlations. The calculation retains the full kine-
matics of the vector boson and of its decay products, allowing the user to apply arbitrary cuts on
the final state, and to plot the corresponding distributions in the form of bin histograms. The decay
modes included are W± → l±νl and Z0/γ → l+l−. The DYRes program computes the cross section
of Drell–Yan lepton pairs with high invariant mass M (M � ΛQCD) produced, via vector boson V
(V = W±, Z/γ) decay, in hadronic collisions, performing the resummation of the large logarithmic
contributions which appear when the vector boson transverse momentum pT is much smaller than the
invariant mass M ( pT � M ). The calculation includes the leptonic decay of the vector boson with
the corresponding spin correlations, retaining the full dependence on the final-state lepton(s) kinemat-
ics, the Z − γ interference and the finite-width effects. We implement the leptonic decay W± → l±νl
and Z0/γ → l+l−. The resummed result is consistently matched to the fixed-order calculation valid
at high-pT up to O(α2

S). The fixed-order calculation is performed with the dipole formalism [21] as
implemented in the MCFM program. Since the fixed-order cross section is divergent when the transverse
momentum pT of the vector boson becomes small,a suitable counter term must be subtracted to make
the result finite as pT → 0. The counter term is evaluated through an appropriate modification of the
DYNNLO program [22].
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3.1

3.1.1 Input parameters

Boson mass parameters are reported in the following table

Parameter Value (GeV)
MW 80.399
ΓW 2.085
MZ 91.1876
ΓZ 2.4952

The Fermi constant is set to GF = 1.16637× 10−5GeV−2 and the following CKM matrix elements
are used Vud Vus Vub

Vcd Vcs Vcb
Vtd Vts Vtb

 =

0.97427 0.22536 0.00355
0.22522 0.97343 0.0414
0.00867 0.0404 0.999146



Each EW parameter is taken from the PDG 2014.The EW couplings of the W and Z bosons to
quarks and leptons are treated at the tree level, so that the above parameters are sufficient to fully
specify the EW content of the calculation.

Before compiling the DYRes program, the user can choose to apply cuts on the leptonic final-state.
This is done through the cuts-subroutine.The default version of this subroutine contains some
selection cuts that are typically used in the experimental analysis. Since the resummation procedure
is necessarily inclusive over the QCD radiation recoiling against the vector boson, cuts on jets or
isolation cuts on final state leptons can not be implemented.

3.1.2 Simulations for the Tevatron: DYqT results

As discussed in the Introduction, pp collisions provide a precise strategy to make measurement of
MW . To pursue this, an accurate study for W and Z pT spactra is needed. For the rest of this section
we will focus on this topic in order to make clear the advantages of NLO+NNLL calculations in QCD
compared with LO+NLL.

In order to produce pT spectra, a set of Parton Distribution Functions (PDFs) has to be chosen.
The results we expose refer to MSTW2008, MSTW2004, NNPDF3.0 and NNPDF2.32. Since simulations can
be performed at LO+NLL as well as NLO+NNLL, it is necessary to maintain the same perturbative
order for PDFs set in order not to neglect/add information throughout the computation. Thus, we
will use PDFs both at NLO and NNLO depending on the perturbative order used in software.

The first set of results we present refers to the following input setting

Parameter Value (GeV)
MW 80.399
ΓW 2.085
MZ 91.1876
ΓZ 2.4952
PDF set MSTW2008

µR Mb/4,Mb/2,Mb

µF Mb/4,Mb/2,Mb

Q Mb

2In this work we refer to the following specific PDFs sets: MSTW2008nlo68cl, MRST2004nlo, NNPDF30nloAs0118,
NNPDF23nloAs0118; so as for nnlo
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3.1

A factor of 2 in scaling µR, µF is used to estimate theoretical uncertainties on pT spectra.

The distributions for the Z boson obtained according to the setting above are the following
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Figure 1: Left Panel : Transverse-momentum spectrum for Z boson production at LO+NLL. Right Panel :
Transverse-momentum spectrum for Z boson production at NLO+NNLL. The � refers to un-scaled µR and
µF , the � to µR, µF = Mb/4 and the � to µR, µF = Mb/2. In each run the resummation scale Q is set to
Q =Mb.

As shown in the Left Panel, the scaling of µR, µF affects the computation by producing a band for
each bin. In this way pT spectra are close in the range [10, 40] GeV and present an overlap at low-pT
(≤ 5 GeV). At a higher perturbative order we get data less affected by scaling, as reported in the
Right Panel. This is due to low-energy jets production that affects more the computation as the
perturbative order increases. This effect is more visible varying the auxiliary scale Q as well.

For the W boson - with the same setting - we obtain the following distributions
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Figure 2: Left Panel : Transverse-momentum spectrum for W boson production at LO+NLL. Right Panel :
Transverse-momentum spectrum for W boson production at NLO+NNLL. The � refers to un-scaled µR and
µF , the � to µR, µF = Mb/4 and the � to µR, µF = Mb/2. In each run the resummation scale Q is set to
Q =Mb.

At a lower perturbative order, the W boson distributions are scaled as Z distributions. More
quantitatively, in the peaks region the spread is about 0.5%. Along the intermediate as well as high
region of pT the NLO+NNLL produces thinner band for both bosons.
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3.1

In order to study the relation between W and Z pT spectra, we compute the ratio of distributions
pWT /p

Z
T at the same perturbative order. The plots below refer to the current initial setting for DYqT.
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Figure 3: Left Panel : pWT /pZT ratio distribution at LO+NLL. Right Panel : pWT /pZT ratio distribution at
NLO+NNLL. The � refers to un-scaled µR and µF , the � to µR, µF = Mb/4 and the � to µR, µF = Mb/2.
In each run the resummation scale Q is set to Q = Mb. At a higher perturbative order in QCD the band is
thinner than LO+NLL.

Note that keeping the resummation scale Q constant, even if pT spectra are subjected by scaling, the
ratio distributions present almost a total overlap along the pT range investigated. Notice that at
LO+NLL the spread at low-pT is about 5%, it decreases to less than 1% in intermediate region and
increases up to 3% in the high-pT region. The NLO+NNLL perturbative order presents slightly
different trends. Distributions look very similar at low-pT and have much more agreement along the
whole range of computation up to 40 GeV where the spread is roughly 2%.
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In order to better understand the impact of theoretical scaling, we perform a different run of DYqT
according to the following table of parameters 3

Parameter Value (GeV)
µR Mb/4,Mb/2,Mb

µF Mb/4,Mb/2,Mb

Q Mb/4,Mb/2,Mb

The difference from the first run is stated by a variation of Q. The following are the distributions
obtained for Z boson production
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Figure 4: Left Panel : Transverse-momentum spectrum for Z boson production at LO+NLL. Right Panel :
Transverse-momentum spectrum for W boson production at NLO+NNLL. The � refers to un-scaled µR and
µF , the � to µR, µF = Mb/4 and the � to µR, µF = Mb/2. In each run the resummation scale Q takes the
same value of other scales.

In the case of W boson production we have the following results
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Figure 5: Left Panel : Transverse-momentum spectrum for W boson production at LO+NLL. Right Panel :
Transverse-momentum spectrum for W boson production at NLO+NNLL. The � refers to un-scaled µR and
µF , the � to µR, µF = Mb/4 and the � to µR, µF = Mb/2. In each run the resummation scale Q takes the
same value of others scales.

3Mass parameters are the same as the first table.
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3.1

As sketched by distributions, the resummation scaling affects seriously the computation of pT
distributions for both bosons. At LO+NLL the difference near peaks is 45% and decreases to about

20% at NLO+NNLL. This result is due to the particular form of the resummation factor g
(3)
N in the

case in which Q = µR = µF . The NNLL correction takes the following form

g
(3)
N

(
αSL,

m2
V

µ2
R

,
m2
V

Q2

)
= −A

(3)

2β2
0
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2
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(1− λ)2

)
+

+
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ln(1− λ)

1− λ

)
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(
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1
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0
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ln2(1− λ) + ln(1− λ)

[
β0β2 − β2

1

β4
0

+
β2

1

β4
0(1− λ)

+
(
β0β2(2− 3λ) + β2

1λ
)])

(19)

where - in this case - the coefficients B
(n)

N = B
(n)
N .

Let us consider the ratio distributions pWT /p
Z
T
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Figure 6: Left Panel : pWT /pZT ratio distribution at LO+NLL. Right Panel : pWT /pZT ratio distribution at
NLO+NNLL.The � refers to un-scaled µR and µF , the � to µR, µF = Mb/4 and the � to µR, µF = Mb/2.
In each run the resummation scale Q is set to Q =Mb.

Notice that, despite an increasing spread as pT increases, at low-pT there is an agreement at both
perturbative orders. In this input setting, different scaling of Q produce drastic differences in ratio
distributions as pT increases. In particular, at LO+NLL the spread is much higher than
NLO+NNLL. Ratio distributions depend on the resummation scaling. It is useful to understand in
which range of pT the resummation scale has a strong impact on theoretical predictions. A complete
analysis of this aspect can be pursued by keeping the scales µR and µF fixed (= Mb) and varying
Q = Mb,Mb/2,Mb/4. In this way we expect to figure out which values of Q affect more the
production of W and Z.
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Thus, the following plots refer to the setting-table

Parameter Value (GeV)
µR Mb

µF Mb

Q Mb/4,Mb/2,Mb

For the Z boson spectra we obtain the following results
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Figure 7: Left Panel : Transverse-momentum spectrum for Z boson production at LO+NLL. Right Panel :
Transverse-momentum spectrum for W boson production at NLO+NNLL. The � refers to un-scaled µR, µF , Q,
the � to Q = Mb/4 and the � to Q = Mb/2. In each run the resummation scale µR, µF take the same value
of boson masses.

Results for the W are
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Figure 8: Left Panel : Transverse-momentum spectrum for W boson production at LO+NLL. Right Panel :
Transverse-momentum spectrum for W boson production at NLO+NNLL. The � refers to un-scaled µR, µF , Q,
the � to Q = Mb/4 and the � to Q = Mb/2. In each run the resummation scale µR, µF take the same value
of boson masses.

At LO+NLL the spread in the peak region is about 20% and decreases drastically at the highest
perturbative order to roughly 1%.
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Ratio distributions
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Figure 9: Left Panel : pWT /pZT ratio distribution at LO+NLL. Right Panel : pWT /pZT ratio distribution at
NLO+NNLL. T the � refers to un-scaled µR, µF , Q, the � to Q = Mb/4 and the � to Q = Mb/2. In each
run the resummation scale µR, µF take the same value of boson masses.

Ratio distributions present the same trends along the whole range of pT investigated. Notice that,
despite the scaling of auxiliary scales µR, µF , Q gives us a precise method for studying theoretical
errors, the renormalization scale is not a theoretical assumption and should be chosen as close as
possible to the mass of boson. Thus, ratio distributions do not depend from the scaling of µR, µF , as
we expected. In fact µR, µF do not have to cause any dependence in physical results. Thus, the
spread at low-pT might be due to the PDF set used for computation.To analyze this topic in more
detail we use MSTW2004, NNPDF3.0 and NNPDF2.3 plus scaling µR, µF .
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The following results refer to the following setting-table

Parameter Value (GeV)
µR Mb/4,Mb/2,Mb

µF Mb/4,Mb/2,Mb

Q Mb

PDF set MSTW2004

Z boson distributions
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Figure 10: Left Panel : Left Panel : Transverse-momentum spectrum for Z boson production at LO+NLL.
Right Panel : Transverse-momentum spectrum for Z boson production at NLO+NNLL. The � refers to un-
scaled µR and µF , the � to µR, µF =Mb/4 and the � to µR, µF =Mb/2. In each run the resummation scale
Q is set to Q =Mb.

W boson distributions
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Figure 11: Left Panel : Transverse-momentum spectrum for W boson production at LO+NLL. Right Panel :
Transverse-momentum spectrum for W boson production at NLO+NNLL. The � refers to un-scaled µR and
µF , the � to µR, µF = Mb/4 and the � to µR, µF = Mb/2. In each run the resummation scale Q is set to
Q =Mb.

MSTW2004 provides distributions less affected by the scaling of µR, µF . Notice that the W boson is
slightly less affected by scaling, providing less than 1% spread near peaks, whereas the Z spreads are
next to 1%.
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Ratio distributions
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Figure 12: Left Panel : pWT /pZT ratio distribution at LO+NLL. Right Panel : pWT /pZT ratio distribution at
NLO+NNLL. The � refers to un-scaled µR, µF , Q, the � to Q =Mb/4 and the � to Q =Mb/2. In each run
the resummation scale µR, µF take the same value of boson masses.

Notice that MSTW2004 produces an increasing spread as pT increases in the intermediate and high-pT
regions. This is a remarkable difference compared with MSTW2008 set. At LO+NLL in low-pT region
the spread is 3%, decreases to about 1% in the intermediate region to increase slightly up to 2% at
40 GeV. The NLO+NNLL has 1% spread at low-pT , 3% in the intermediate region and an
increasing trend up to 5% near 40 GeV.
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The last PDF set we use is NNPDF3.0. The following results refer to the following setting-table

Parameter Value (GeV)
µR Mb/4,Mb/2,Mb

µF Mb/4,Mb/2,Mb

Q Mb

PDF set NNPDF3.0

Z boson production
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Figure 13: Left Panel : Left Panel : Transverse-momentum spectrum for Z boson production at LO+NLL.
Right Panel : Transverse-momentum spectrum for Z boson production at NLO+NNLL. The � refers to un-
scaled µR and µF , the � to µR, µF =Mb/4 and the � to µR, µF =Mb/2. In each run the resummation scale
Q is set to Q =Mb.

W boson production
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Figure 14: Left Panel : Left Panel : Transverse-momentum spectrum for W boson production at LO+NLL.
Right Panel : Transverse-momentum spectrum for W boson production at NLO+NNLL.The � refers to un-
scaled µR and µF , the � to µR, µF =Mb/4 and the � to µR, µF =Mb/2. In each run the resummation scale
Q is set to Q =Mb.
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Ratio distributions
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Figure 15: Left Panel : pWT /pZT ratio distribution at LO+NLL. Right Panel : pWT /pZT ratio distribution at
NLO+NNLL.The � refers to un-scaled µR, µF , Q, the � to Q = Mb/4 and the � to Q = Mb/2. In each run
the resummation scale µR, µF take the same value of boson masses.

At LO+NLL a similar trend is obtained at low-pT along with the increasing spread in intermediate
and high-pT region at NLO+NNLL. Notice that NNPDF3.0 gives thinner bands. To be consistent,
the last PDFs set we use is NNPDF2.3, the following are the results obtained with the same type of
scaling.
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Figure 16: Left Panel : Left Panel : Transverse-momentum spectrum for Z boson production at LO+NLL.
Right Panel : Transverse-momentum spectrum for Z boson production at NLO+NNLL. The � refers to un-
scaled µR and µF , the � to µR, µF =Mb/4 and the � to µR, µF =Mb/2. In each run the resummation scale
Q is set to Q =Mb.
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W boson production
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Figure 17: Left Panel : Left Panel : Transverse-momentum spectrum for Z boson production at LO+NLL.
Right Panel : Transverse-momentum spectrum for Z boson production at NLO+NNLL. The � refers to un-
scaled µR and µF , the � to µR, µF =Mb/4 and the � to µR, µF =Mb/2. In each run the resummation scale
Q is set to Q =Mb.
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Figure 18: Left Panel : pWT /pZT ratio distribution at LO+NLL. Right Panel : pWT /pZT ratio distribution at
NLO+NNLL.The � refers to un-scaled µR and µF , the � to µR, µF = Mb/4 and the � to µR, µF = Mb/2.
In each run the resummation scale Q is set to Q =Mb.

In the low-pT region the LO+NLL band is about 5%, decreases to about 2% near 20 GeV where
NNPDF2.3 presents a slight overestimation (≈ 1%) from other sets and is reduced to 1% around 40
GeV. The NLO+NNLL band has the following trend: 1% at low-pT , 2% near 20 GeV and 6% next
to 40 GeV. Notice that as pT approaches to 40 GeV the scaled distributions at NLO+NNLL become
closer forming a sub-band of roughly 2%. As final discussion we present a summary plot including
ratios at different perturbative orders in QCD using the PDFs set we have as far.
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Figure 19: Left Panel : pWT /pZT ratio distribution at LO+NLL. Right Panel : pWT /pZT ratio distribution at
NLO+NNLL.The � refers to MSTW2008, the � to NNPDF3.0, the � to NNPDF2.3 and the � to MSTW2004.

At LO+NLL (right panel) distributions present a similar trend in each range of pT . At low-pT the
band is roughly 5% and ratios do not present shift when changing PDF set. The spread is reduced
to about 1% at intermediate-pT and increases up to 3% near 40 GeV. A slightly divergent trend is
observed at NLO+NNLL order. At low-pT the spread for each PDF set is shrunk to 2%, in the
intermediate-pT region increases up to 3% reaching 6% at 40 GeV. Notice that MSTW2008 slightly
underestimates data at low-pT . Notice that NNPDF3.0 present a thinner band at NLO+NNLL,
especially in the low-pT region.

A different way to perform theoretical scaling is to change each auxiliary scale with no dependence
on each others. Notice that the results we have discussed as far combine at least 2 out of 3 auxiliary
scales equal to each others. What we report now refer to the following setting-table. We use
MSTW2004, MSTW2008, NNPDF2.3 and NNPDF3.0 so as to compare consistent PDFs sets. Thus, the
results below refer to the following setting-table

Parameter Value (GeV)
µR Mb/4,Mb/2,Mb

µF Mb/2,Mb/4,Mb

Q Mb

In this way we consider non dependent scales for each run, providing a different method to perform
the scaling that can be compared with the one discussed as far. The aim of this study is to obtain
two ways to estimate theoretical uncertainties on ratio distributions so as to use both scaling for an
accurate discussion concerning the impact of theoretical errors on MW measurement.
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The analysis pursued in this case is strictly similar to the previous type of scaling. For this reason,
we limit the discussion to a comparison between ratio distributions. The following are the results
obtained using the same PDFs sets as above
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Figure 20: Left Panel : pWT /pZT ratio distribution at LO+NLL. Right Panel : pWT /pZT ratio distribution at
NLO+NNLL.The � refers to MSTW2008, the � to NNPDF3.0, the � to NNPDF2.3 and the � to MSTW2004.

Distributions present a good agreement along the range of pT investigated. The total band is about
3% at low-pT , 2% in the intermediate region and 5% near 40 GeV for the LO+NLL. A slightly
different trend is obtained at NLO+NNLL. The spread is roughly 2% at low-pT and increases to
about 3%, reaching 6% at 40 GeV. In each case, changing PDFs set does not provide a considerable
shift in the uncertainty band.

The last type of scaling we perform concerns the Non-Perturbative smearing parameter. The
smearing is applied as an additional factor exp(−gNP b2) in the resummed part, where b is the impact
parameter variable that is Fourier conjugated to pT . The choice gNP = 0 means that no smearing is
applied to the perturbative result. The results we present refer to the following setting-table

Parameter Value (GeV)
µR Mb/2
µF Mb/2
Q Mb/2

gNP (0, 1/2, 1)GeV2

Notice that it is not possible to compute the expected value of gNP theoretically, since it has to be
deduced by experimental data. The scaling reported is commonly used in literature. We will include
the results for these case in the following section.

3.1.3 Simulations for the Tevatron: DYRes results

This section is devoted to a discussion of pT distributions computed with DYRes. We remind that this
program is different from DYqT since it allows computation both at NLO+NLL and NNLO+NNLL.
We limit our discussion to the MSTW2008 PDFs set with no theoretical scaling. We will first compare
W and Z spectra, then discuss ratio distributions along with the bands we have found with DYqT.
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The following are the pT spectra for the Z and W boson
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Figure 21: Left Panel: Z pT spectrum at NLO+NLL and NNLLO+NNLL. Left Panel: W pT spectrum at
NLO+NLL and NNLLO+NNLL. Notice that Z boson distributions presents a bit larger spread (≈ 1%) than
the W in the peaks region.

The following plots refer to a comparison of pT of Z and W at the same perturbative order
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Notice that the Z boson in a bit more affected by the change from NLO+NLL to NNLO+NNLL
than the W. The spread near the peak region is about 1% and is almost totally absent for the W
boson. At NLO+NLL, W and Z spectra are slightly different near 2 GeV.
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In order to compare DYRes data with the theoretical bands we have found, we present two summary
plots comparing the two programs. We report ratio distributions below
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Monte-Carlo data are in good agreement with theoretical bands at each perturbative order, since a
large percentage of them is included in the green as well as yellow bands, which are extremely close
along the pT range studied. Despite the difference in reachable perturbative orders of the programs,
it is noticeable that data at NLO+NLL present a slight overestimation of the central value of the
band of about 1.5% and at NNLO+NNLL underestimate of 1% the correspondent central value.
Notice that the Non-Perturbative smearing scaling explains DYRes data trend at low-pT providing a
band of about 2%. It is remarkable that at intermediate and high-pT the gNP band (≈ 3%) is
thinner than other cases. We will leave this study as future progress in W pT spectra analysis.
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4 Conclusions

In this work we have presented a study of theoretical uncertainties on transverse-momentum distri-
butions that affect the measurement of the W boson mass. Our analysis is focused on the W and
Z production at the Tevatron energies as a preliminary study for a precise measurement of MW at
CDF. The specific aim we have pursued regards the impact of Renormalization, Resummation and
Factorization scaling on pT distributions. In order to provide a more general point of view, we have
considered different Parton Distribution Functions sets, such as MSTW2008, MSTW2004, NNPDF3.0 and
NNPDF2.3. We have found that the scaling of these parameters along with the PDFs produce a 1−6%
theoretical error represented by a band along the pT region investigated. Since DYRes data at low-pT
are subjected to over/under-estimation of theoretical uncertainties - depending on the perturbative
order - the next future aim is to study the impact of non-perturbative models at low as well as inter-
mediate and high-pT in order to enhance uncertainties predictions in the kinematical region used for
experimental measurements.
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