

CVN Studies for Neutral Current π₀ PID in NOvA

Supervisor: Dott. Giulia Brunetti

In partnership with:

Student:

Marco Scodeggio

Outline

- NOvA Experiment:
 - NuMI Beam;
 - Near and Far Detectors;
 - Physics with NOvA.
- Neutral Current (NC) π_0 in NOvA:
 - Physics & Motivations;
 - NOvA Reconstruction;
 - Current Status.
- Convolutional Visual Network (CVN).
- CVN for π_0 in the Near Detector.
- Conclusions.

NOvA Experiment

NOvA (NuMI Off-axis v_e Appearance) is an experiment which studies neutrino oscillations using the NuMI (Neutrinos at the Main Injector) beam at Fermilab.

‡ Fermilab

NOvA Experiment: The Near and Far Detectors

Far Detector (FD):

- fully active liquid scintillator;
- 810 km baseline (Ash River);
- 15.5 m wide, 15.5 m tall and 66.9 m long.

Near Detector (ND)

- ~1 km from NuMI target;
- 3.9 m wide, 3.9 m tall and 12.67 m long;
- smaller copy of the FD, used to predict flux in the FD.

5 9/23/16 M. Scodeggio I CVN Studies Neutral Current π_0 Inclusive in NOvA

NOvA Experiment: Physics with NOvA

- With $v_{\mu} \rightarrow v_e \& \bar{v}_{\mu} \rightarrow \bar{v}_e$
 - Mass hierarchy;
 - Determine the θ_{23} octant;
 - δ_{CP};
- With $v_{\mu} \rightarrow v_{\mu} \& \bar{v}_{\mu} \rightarrow \bar{v}_{\mu}$
 - Sin²(2 θ_{23});
 - Δm_{32}^2 .
- Also:
 - Neutrino cross-sections at the NOvA ND;
 - SN neutrinos;
 - Search for sterile neutrinos;
 -

🛟 Fermilab

NC neutrino interactions with π₀s in the final state Physics & Motivation

NC π_0 events are the Main Background for NOvA $v_\mu \rightarrow v_e$ as the π_0 can fake v_e appearance

The signature for v_e appearance is a single electron shower. *e* showers can be faked by $\pi_0 -> \gamma \gamma$ showers, where the 2γ showers are reconstructed as one or one is not identified at all

NC π₀ Inclusive in the NOvA ND: NOvA Reconstruction

Fermilab

Reconstructed vertex in the fiducial volume and showers contained in the ND

NC π₀ Inclusive in the NOvA ND: Current Status

Our Signal:

- v_µ NC interactions;
- at least one π_0 with
 - KE $\pi_0 > 0.5$ GeV.
- First studies: cut-based selection of some significant variables for 2-prongs and 3-prongs events brought to a quite good S/B separation, but the efficiency can be improved.
- New approaches currently under studies:
 - multivariate analysis;
 - CVN prong based particle identification.

Convolutional Visual Network (CVN)

Convolutional neural network (CNN), based on modern image recognition technology

Already used as a PID with high performances for $\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}$, sterile neutrinos and v_{μ} disappearance Statistical power equivalent to 30% more exposure ($v_{\mu} \rightarrow v_{e}$)

🛟 Fermilab

CVN NC π_0 in the ND (1)

- CVN in NOvA trained mainly for v_{μ} , v_e and NC ID;
- Training was based on pixel maps for entire slices. In NC π_0 events most of the info comes from the γ prongs;
- Prong based CVN study for NC $π_0$ in the ND;
- The first checks are on the γ-purity of the prongs: identification of the reconstructed prongs in the signal events that are given by the γ from π₀ decay and study of their purity by matching reconstructed prongs with MC truth information;
- Purity = % of the contribution of a particle to that prong;
- Let's take a look at some event display \rightarrow

CVN NC π₀ in the ND: Example of a Lucky Event

- Res Interaction;
- E (*v*_µ) = 2.2 GeV;
- 3 Primaries:
 - p;
 - n;
 - π₀.
- 3 prongs:

NOVA - FNAL E529Prior: 10077/2 Prior: 10

 v_{μ} [2.2 GeV] + ¹²C $\rightarrow v_{\mu}$ [1.2 GeV] + n [0.6 GeV] + p [0.6 GeV] + π_0 [0.6 GeV]

- 2 EM-like;-
- 1 from an *a* particle (classified as a *nucleon* prong).
- They come from the two π_0 's γ :
 - One has 100 % purity;
 - The other 91 % (9 % comes from *p*).

‡ Fermilab

650

CVN NC π_0 in the ND: Example of a Common Event

 v_{μ} [28.4 GeV] + p $\longrightarrow v_{\mu}$ [19.5 GeV] + π^{-} [0.8 GeV] + p [1.4 GeV] + π_{0} [3.9 GeV] + π^{+} [0.5 GeV] + π^{-} [1.9 GeV] + π^{+} [1.0 GeV]

- DIS Interaction;
- E (*v*_µ) = 28.4 GeV;
- 6 Primaries:
 - p;
 - 2 π⁺;
 - 2 π;
 - Πο.

 $\mathbf{NOXA} - \mathbf{FNAL} \mathbf{E929}$ $\mathbf{NOXA} - \mathbf{FNAL} \mathbf{E929}$ $\mathbf{NUT} C \mathbf{S1A} \mathbf{G2V}(1 + \mathbf{p} \rightarrow \mathbf{v}_{\mu} | \mathbf{195} \mathbf{G2V}(1 + \pi^2) | \mathbf{105} \mathbf{G2V}(1 +$

- 5 prongs:
 - 1 EM-like;
 - 2 from one π ;
 - 2 from *p*.

Purity 36 %, the rest comes from a mixture of other particles.

z (cm)

CVN NC π_0 in the ND: Example of a Multi- π_0 Event

- DIS Interaction;
- E (*v*_µ) = 14.8 GeV;
- 4 Primaries:
 - n;
 - 3 π₀ —> one below Kin. En. threshold
- 3 prongs:
 - 2 EM-like; -
 - 1 from an *a* particle classified as a *nucleon* prong).
 - π_0^{1} -> γ^{4} (Png0 16 %) γ^{5} (Png2 80 %)
 - $\pi_0^2 \rightarrow \gamma^6$ (Png2 13 %) γ^7 (Png1 74 %)
 - $\pi_0^3 -> \gamma^8 \gamma^9$ (Png1 & Png2) -> Below Threshold

 v_{μ} [14.8 GeV] + ¹²C $\longrightarrow v_{\mu}$ [11.6 GeV] + n [0.6 GeV] + π_0 [1.9 GeV] + π_0 [0.6 GeV] + π_0 [0.5 GeV]

- They don't both come from one of the two π_0 's γ :
 - One has a purity of 74 %;
 - The other 80 %;
 - The missing 26 % and 20 % are a mixture of the other γ (from the π_0 below threshold too).

Fermilab

Prong Purity Distributions

Purity Distribution for NC-π₀ prongs

🛟 Fermilab

Purity Distributions —> Breakdown by Interaction Types

Purity Distribution for NCDIS-π₀

CVN NC π_0 in the ND (2)

- There's a number of possibility for a new training to build a π₀ ID Prong Based: one can consider just the prong by prong information or include also the slice (to keep informations such the distance from the vertex);
- Prong by prong or EM-like coupled prongs (from the same π_0)?

Selection of good single- π_0 events \rightarrow

Single π₀ Purity Distributions

😤 Fermilab

60

50

40

30

20

10

0₀

CVN NC π_0 in the ND (3)

- Training developed focusing on EM-like coupled prongs (from the same π_0) maintaining the slice information;
- So some changes were necessary to create Pixel Maps containing the aforementioned infos and new labels needed;
- Pixel Maps are normally created starting from the hit info (# of hit cells and planes and energy deposited) of each prong, in our case we merge together two prongs to create a map;
- Then from Pixel Maps to two datasets: test (20%) and training (80%).

CVN NC π_0 in the ND: The Labels

- CVN takes as input both the labels and the Pixel Map and associate them;
- Considering the Pixel Maps were different, • different labels were needed;
- I wrote, tested and implemented this • new part of the code for the NOvA software.

All the possible couples are taken into account

	_		
Prong Type	Prong 1	Prong 2	Couple Type
$e \circ \mu$ = Leptons	Lep	Lep	LepLep
<i>p</i> o <i>n</i> = Hadrons	Lep	Had	LepHad
π^+ = Mesons	Lep	Gamma	LepGamma
$\pi^0 = Pi0$	Lep	Mes	LepMes
OtherPDG	Lep	Pi0	LepPi0
Unkwn	Lep	Oth	LepOth
Empy	Had	Had	HadHad
	Had	Gamma	HadGamma
	Had	Mes	HadMes
	Had	Pi0	HadPi0
	Had	Oth	HadOth
	Gamma	Gamma	GammaGamma
	Gamma	Mes	GammaMes
-	Gamma	Pi0	GammaPi0
	Gamma	Oth	GammaOth
PNG1&2 -	Mes	Mes	MesMes
PNG1&3	Mes	Pi0	MesPi0
	Mes	Oth	MesOth
	Pi0	Pi0	Pi0Pi0
i1&2 -	Pi0	Oth	Pi0Oth
U type	Couple	Unknwon	Unknwon

Conclusions

- CVN is a new and still developing PID and used by NOvA experiment for the very latest results;
- Training CVN specifically for π_0 ID in the NOvA ND requires a detailed prong study;
- It's extremely useful for background study and cross sections measurements in the ND;
- I created a new mapping based on EM-like couples;
- Next step will be to start the training (almost there!);
- Then further studies for the FoMs, the efficiency, etc ...;
- Stay tuned!

