### **Project 1:**

## Can SWORD mission detect the sources of the highest energy cosmic rays?

Marco Dolci Internship at JPL NASA (J. Booth) Pasadena (USA) from 09/02 to 11/02 2013





Jet Propulsion Laboratory California Institute of Technology





The Italian Scientists and Scholars of North America Foundation

### **The SWORD Mission Concept**

(Synoptic Wideband Orbiting Radio Detector)

A. Romero-Wolf et al, arXiv:1302.1263v1



## EGMF value (B, $\lambda_B$ )

| Parameters  | Range value of interest          |
|-------------|----------------------------------|
| Е           | 60 EeV ( $10^{18} - 10^{20}$ eV) |
| В           | 1-100 nG                         |
| $\lambda_B$ | 0.1-10 Mpc                       |
| D           | < 75 Mpc                         |
| Z           | 1 (protons) / 26 (iron nuclei)   |

Degeneration btw source position ( $\vartheta_{ad}$ ) and  $B\sqrt{\lambda_B}$ 



## $\vartheta_{scat}$ theoretical model

#### SCATTERING ANGLE (mean value):

•  $D \leq \lambda_B$ 

 $E > 10^{18} \mathrm{eV} \ [1 \ \mathrm{EeV}], \vartheta_{scat} \leq 10^{\circ} \ (\mathrm{Lee}, \mathrm{Olinto} \ \& \ \mathrm{Sigl}, 1995)$ 

$$\vartheta_{scat} = 2.6^{\circ} \left(\frac{E}{10^{20} eV}\right)^{-1} \left(\frac{D}{50Mpc}\right) \left(\frac{B}{10^{-10}G}\right) Z$$

• 
$$D \gg \lambda_B$$
  
 $\vartheta_{scat} = 0.23^{\circ} \left(\frac{E}{10^{20} eV}\right)^{-1} \left(\frac{D}{50Mpc}\right)^{0.5} \left(\frac{B}{10^{-10}G}\right) \left(\frac{\lambda_B}{1Mpc}\right)^{0.5} Z$   
Assumption: Rayleigh distribution to find  $\sigma_{scat} = \vartheta_{scat} \sqrt{\frac{2}{\pi}}$   
**ANGULAR RESOLUTION:**  
 $\vartheta_{res} = 2^{\circ}$  baseline / 5° threshold

### Simulation for scattering signals from a

given source

RA & DEC world



 $\vartheta_{ad}$ 



Phi & Teta world

Teta = Rayleigh ( $\sigma_{scat}$ ,  $\vartheta_{res}$ ) Phi = Uniform  $(0, 2 \pi)$ 

 $M=M(\alpha_{src}, \delta_{src})$ 

# AGN nearest neighbour angular distance $\vartheta_{nnad}$ (AGN clustering)



### AGN distance distribution



#### CenA (3.8Mpc), $\vartheta_{res}$ =2 °



CenA (3.8Mpc),  $\vartheta_{res}$ =5 °



### Virgo (16.5Mpc), $\vartheta_{res}$ =2 °



### Virgo (16.5Mpc), $\vartheta_{res}$ =5 °



### Perseus (73.6Mpc), $\vartheta_{res}$ =2 °



### Perseus (73.6Mpc), $\vartheta_{res}$ =5 °



# Source-CR event mean angular distance (**CenA**)

| Distance[Mpc] | Z  | $artheta_{res}[^{\circ}]$ | $\lambda_B$ [Mpc] | < $artheta_{ad}$ > @ $10^{20}$ eV[°] |
|---------------|----|---------------------------|-------------------|--------------------------------------|
| 3.8           | 1  | 2                         | 0.1               | 2                                    |
| 3.8           | 1  | 2                         | 1                 | 2                                    |
| 3.8           | 1  | 2                         | 10                | 3                                    |
| 3.8           | 26 | 2                         | 0.1               | 7                                    |
| 3.8           | 26 | 2                         | 1                 | 16                                   |
| 3.8           | 26 | 2                         | 10                | 50                                   |
| 3.8           | 1  | 5                         | 0.1               | 5                                    |
| 3.8           | 1  | 5                         | 1                 | 5                                    |
| 3.8           | 1  | 5                         | 10                | 5                                    |
| 3.8           | 26 | 5                         | 0.1               | 8                                    |
| 3.8           | 26 | 5                         | 1                 | 20                                   |
| 3.8           | 26 | 5                         | 10                | 60                                   |

# Source-CR event mean angular distance (Virgo)

| Distance[Mpc] | Z  | $artheta_{res}[^{\circ}]$ | $\lambda_B$ [Mpc] | < $\vartheta_{ad}$ > @ $10^{20}$ eV[°] |
|---------------|----|---------------------------|-------------------|----------------------------------------|
| 16.5          | 1  | 2                         | 0.1               | 2                                      |
| 16.5          | 1  | 2                         | 1                 | 2                                      |
| 16.5          | 1  | 2                         | 10                | 5                                      |
| 16.5          | 26 | 2                         | 0.1               | 14                                     |
| 16.5          | 26 | 2                         | 1                 | 40                                     |
| 16.5          | 26 | 2                         | 10                | 90                                     |
| 16.5          | 1  | 5                         | 0.1               | 5                                      |
| 16.5          | 1  | 5                         | 1                 | 5                                      |
| 16.5          | 1  | 5                         | 10                | 7                                      |
| 16.5          | 26 | 5                         | 0.1               | 12                                     |
| 16.5          | 26 | 5                         | 1                 | 40                                     |
| 16.5          | 26 | 5                         | 10                | 90                                     |

# Source-CR event mean angular distance (**Perseus**)

| Distance[Mpc] | Z  | $artheta_{res}[^{\circ}]$ | $\lambda_B$ [Mpc] | < $artheta_{ad}$ > @ $10^{20}$ eV[°] |
|---------------|----|---------------------------|-------------------|--------------------------------------|
| 73.6          | 1  | 2                         | 0.1               | 2                                    |
| 73.6          | 1  | 2                         | 1                 | 4                                    |
| 73.6          | 1  | 2                         | 10                | 10                                   |
| 73.6          | 26 | 2                         | 0.1               | 22                                   |
| 73.6          | 26 | 2                         | 1                 | 70                                   |
| 73.6          | 26 | 2                         | 10                | 90                                   |
| 73.6          | 1  | 5                         | 0.1               | 5                                    |
| 73.6          | 1  | 5                         | 1                 | 6                                    |
| 73.6          | 1  | 5                         | 10                | 10                                   |
| 73.6          | 26 | 5                         | 0.1               | 30                                   |
| 73.6          | 26 | 5                         | 1                 | 80                                   |
| 73.6          | 26 | 5                         | 10                | 90                                   |

### Auger paper (2010)



#### 69 UHECR events AGNs from VCV catalog 12th ed.

The correlating fraction is  $(38^{+7}_{-6})\%$ The isotropic fraction is 21%





0.2 L

Total number of events

M. Dolci, JPL 10/24/2013

### 100 CR events random simulation

 $(\vartheta_{res}=2^{\circ}, \vartheta_{scat}=10^{\circ})$ 



### Sensitivity analysis of simulated data



### 100 CR events random simulation





## Sensitivity analysis of simulated data



### Sensitivity analysis of simulated data



## Outlooks

- Obtain the confidence level for SWORD mission
- Insert in the  $\vartheta_{scat}$  the EGMF coherence length ( $\lambda_B$ )
- Study a model for  $\vartheta_{scat} > 10^{\circ}$  (Z=26)
- Study the distribution of UHECR charge number (Z)

## Project 2: Global NASA CubeSat Database

### Marco Dolci Internship at JPL NASA (J. Smith) Pasadena (USA) from 09/02 to 11/02 2013





Jet Propulsion Laboratory California Institute of Technology





### Database Infos

- Data Type: Mission and Part-level data
- "Required": Subsystem, Mass, Volume, Power, Data Provider
- "Additional": Data Rates, Flight Heritage, Cost, Lessons, etc.
- User-interface where users can add/ edit, view all, or search
- Database is extensible, compatible with other JPL databases



## My work

| ome + Parts + Parts          | + OEMV-1 GPS Receive                  | t             |                      |                      |
|------------------------------|---------------------------------------|---------------|----------------------|----------------------|
| Change pai                   | rt                                    |               |                      |                      |
| # Delete                     |                                       |               | Save and add another | Save and continue ed |
| Required                     |                                       |               |                      |                      |
| Subsystem:<br>Part type:     | Attitude Determinatio<br>GPS Receiver | n and Control | •<br>  •             |                      |
| Unique Namei                 | OEMV-1 GPS Receiver                   | ,             |                      |                      |
| Massi                        | 21.300000                             | Units         | 9                    |                      |
| Volume:                      | 37843.000000                          | Unit:         | mm³ 😱                |                      |
| 1U Volumetric<br>Equivalent: | 0.040000                              |               |                      |                      |

Fig. 1: Adding/ Editing a new CubeSat Part

| Action              | Go 0 of 100 salected                                |
|---------------------|-----------------------------------------------------|
| President Lancester |                                                     |
| Mission Name        | Organization(s)                                     |
| CP5                 | California Polytechnic State University at San Luis |
| RAMP-ART            | Morehead State University                           |
| MCUBED              | University of Michigan                              |
| FIRE-BIRD           | Montana State University/ University of New Ham     |
| DICE                | Space Dynamics Laboratory                           |
| NPS-SCAT            | USAF STP (Space Test Program)                       |
| CSSWE               | University of Colorado at Boulder                   |
| CADRE               | University of Michigan                              |

#### Fig. 2: Viewing all CubeSat Missions

| heleysless<br>Industratio |     |        |          |       | Part Spec              |           |             |   |  |
|---------------------------|-----|--------|----------|-------|------------------------|-----------|-------------|---|--|
|                           |     |        |          |       | Earnes                 |           |             |   |  |
| Mana                      |     |        |          |       | Average Prover         |           |             |   |  |
| (A) +                     |     | 4 . 11 |          |       | 3 +                    | 100       | 1000        | - |  |
| Volume                    |     |        |          |       | Generale/Concurse Pro- | -         |             |   |  |
| (A) +                     | and | 4 00   | ė        | - 444 | 0.7 (armin #17         | Consume   |             |   |  |
| 10 Volumetric Electronic  |     |        |          |       |                        |           |             |   |  |
| a +                       |     | 4 2    |          |       |                        |           |             |   |  |
| Char Inte                 |     |        | Part Spe | Marr  | Volume                 | To Easter | Aug. Passer |   |  |
| Barghon, Animalog         | -   | -      | Cartere  | 24.0  | 10.303 mod             | 8.0393    | PIAN        |   |  |
| Calabo Data               | -   | -      | Carters  | 275.4 | 118,222                | 8.179223  | 2.0.0       |   |  |
| of the second framework   | -   | -      | Carriere | 210.4 | 788.4 met              | 8.000198  | P528        |   |  |
| and the second second     |     |        |          |       |                        |           |             |   |  |
| Inter Internet            | -   | -      | Canere   | 277.4 | 187,183 mold           | 8.118716  | (+221)      |   |  |

#### Fig. 3: Searching for Parts Based on Criteria

### Acknowledgements

A special thank to:

- ISSNAF (Dr. S. Donati, Dr. G. Bellettini)
- ASI
- JPL (J. Booth, J. Smith, Dr. A. Romero-Wolf, Dr. S. Spangelo)