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Abstract

The aim of this research project is to investigate the properties of a planetary orbit which is perturbed by the
passage of a �ying-by star.
We shall see that this passage, under particular conditions, is able to produce strong variations in the kinetic
energy of the perturbed body and, as a consequence, e�ective variations of the eccentricity of its orbit.
The study of tidal perturbations of planetary orbits is of great importance nowadays, because many studies have
shown that this mechanism should play a crucial role in the determination of the �nal con�guration of planetary
systems.
This work is composed of di�erent sections. The �rst part describes the problem from a general point of view. In
the second part and in the third sections we shall investigate the di�erence between the analytical model we have
employed in our simulations and one old model, which has proven to be of particular interest in the description
of globular clusters. This di�erence is shown both from an analytical point of view and through simulations.
The fourth part describes the �rst results obtained with the simulation environment developed by the author,
along with some analytical considerations on the problem under study.
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1 Tidal interactions: a general introduction to the problem

The physical environment which we are aiming to describe is presented in the graphical representation
below:
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Fig. 1: Graphical representation of the physical environment described: an object (in blue), interacts
with the center of mass of the proto-planetary system (in orange) and with an external perturber
(in green).

An object, shown in blue, orbits around the center of mass of a gravitationally bound system. The orbit
is supposed to be initially circular. This isolated system is perturbed by the passage of a �ying-by star.
The center of the system of reference is �xed on the center of mass of the gravitationally-bound system.
Note that the system so described is scale-invariant: the analytical approach developed is equally able to
describe the tidal perturbations active in galactic encounters and the perturbations of planetary orbits
caused by passing-by stars. This is due to the fact that both of the cited systems are bound by the
gravitational force, which is scale-invariant.
In the simulation of planetary systems, the following simplifying assumptions are used:

• The mass of the central star is equal to the mass of the perturbing star, while the mass of the
perturbed body (a planet or a minor body) is several orders of magnitude smaller.

• The forces acting on the central star and on the perturbing star are subtracted o�. In this way, the
central star remains �xed on center of the reference system and the perturbing star, which possesses
an initial velocity, follows a strictly straight line.

• The minor body is on a circular orbit around the center of gravity of its system.

Under these assumptions, the e�ective forces acting in the systems are:

1. The gravitational force exerted by the central star on the victim body, which allows it to stay on a
stable circular orbit.

2. The tidal force, which is the di�erence between the gravitational force exerted by the perturbing
star on the center of the planetary system and on the planet itself.
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In particular, the tidal force deserves more explanation.
In the previous graphical representation, the expression for the tidal force is, taking G = 1

FT = −
(
M2M3

R3
R− M2M3

r3
r

)
(1)

This expression is exact, but not quite useful in our approximation, where the radius of the planetary orbit
is negligible with respect to the interstellar distance. In this approximation, the previous two quantities
are very similar to each other and subject to large numerical errors.
For this reason, we expand the tidal force Ft in a series expansion for R ≈ r, that is, calling rp the radius
of the planetary orbits, rp ≈ 0.
In this way, we obtain the following expression, valid for the x-axis (along the direction of minimum
approach between the stars, toward the perturber):

ax = −M3x2
R3

− 3M3

R4
(x3 − x2)(r −R) (2)

2 Comparison between two di�erent analytical approaches

The aim of this section is to provide some possible solutions to the di�erence between the Bessel function
arguments, present in the energy variation formula, of the following papers:

• Disruption of Galactic Clusters, Spitzer L., ApJ (1958)

• Quasi-Resonant Theory of Tidal Interactions, D'Onghia E. et al, ApJ (2010)

The �rst paper dates back to the 1958 and uses a di�erential equation approach to solve, by a series
expansion, the equation of motion of a particle subject to a harmonic potential, with a time-dependent
external force (the perturbing force). This potential is particularly useful when describing the potential
well of globular cluster, while it fails to describe the Keplerian potential which acts in both the galactic
and the planetary cases.
The second paper is more recent and it develops the analytical theory used in the present work.
In the �rst paper, the argument is:

A1 = 2ωt

while in the second paper the argument is:

A2 = ωt

where, in both cases, ω is the internal angular frequency of the particles inside the victim. Actually, there
is a slight di�erence between the physical meaning of the two angular frequencies: while in the �rst paper
ω actually represents the harmonic frequency, in the second paper it stands for the real circular frequency
of the orbit. In any case, as far as the analysis is decomposed in the three cartesian coordinates, this
di�erence is not signi�cant at all.
The personal belief of the author is that the derivation in the paper by Spitzer is inaccurate in some of
the derivations and in general not applicable to the planetary or galactic cases. The following calculations
should allow to understand the reason.

Our starting point is the equation 23 in the Spitzer's paper, which expresses the variation of the total
energy along the z direction.

∆

[
1

2
m

(
dz

dt

)2

z=0

]
=
mω2

2

[(
A0 + λA1 + λ2A2 + ...

)2 −A2
0 +

(
B0 + λB1 + λ2B2 + ...

)2 −B2
0

]
(3)

where the meaning of the coe�cients is explained in the paper, while λ is the expansion factor. All the
coe�cients are evaluated at t equal to +∞.



2 Comparison between two di�erent analytical approaches 4

Let us expand the previous relation by means of performing the squares. In doing this, we assume that
we preserve only the terms up to the second order in λ, as Spitzer himself does.

∆Uz =
mω2

2

[
A2

0 + λ2A2
1 + 2λA0A1 + 2λ2A0A2 −A2

0 +B2
0 + λ2B2

1 + 2λB0B1 + 2λ2B0B2 −B2
0 + ...+O(λ3)

]
(4)

The zero-order terms in λ cancels. Let us group the terms of �rst and second order in λ.

∆Uz =
mω2

2

[
λ2(A2

1 + 2A0A2 +B2
1 + 2B0B2) + λ(2A0A1 + 2B0B1) + ...+O(λ3)

]
(5)

It is necessary to report the meaning of the terms A0, B0, A1, B1, A2, B2

The terms A0 and B0 are the coe�cients of the trigonometric functions of the zero-order solution:

z0 = A0cosωt+B0sinωt (6)

while the other terms are the coe�cients of the higher order expansions:

z1 = A1(t)cosωt+B1(t)sinωt (7)

z2 = A2(t)cosωt+B2(t)sinωt (8)

These functions of t are all evaluated at t→∞ for energy calculations, as stated by Spitzer.
Namely:

A1 = − 1

ω

+∞̂

−∞

f(τ)sinωτ(A0cosωτ +B0sinωτ)dτ (9)

B1 =
1

ω

+∞̂

−∞

f(τ)cosωτ(A0cosωτ +B0sinωτ)dτ (10)

A2 =
1

ω2

+∞̂

−∞

f(τ)sinωτcosωτdτ

τ̂

−∞

(A0cosωu+B0sinωu)sinωuf(u)du (11)

− 1

ω2

+∞̂

−∞

f(τ)sin2ωτdτ

τ̂

−∞

(A0cosωu+B0sinωu)cosωuf(u)du

B2 = − 1

ω2

+∞̂

−∞

f(τ)cos2ωτdτ

τ̂

−∞

(A0cosωu+B0sinωu)sinωuf(u)du (12)

+
1

ω2

+∞̂

−∞

f(τ)sinωτcosωτdτ

τ̂

−∞

(A0cosωu+B0sinωu)cosωuf(u)du

As stated by Spitzer, since the phases of the stars are at random, we may write, denoting by broken
brackets an average over all stars:

< A0B0 >= 0 (13)

< A2
0 >=< B2

0 >= z2c (14)
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where z2c is the mean-square value of z for the cluster stars.
Now, it is straightforward to see that �rst-order terms in λ in equation 5 cancels out. Indeed:

A0A1 = −A0

ω

+∞̂

−∞

f(τ)sinωτ(A0cosωτ +B0sinωτ)dτ (15)

since A0 does not depend on time, we can put it inside the integral:

A0A1 = − 1

ω

+∞̂

−∞

f(τ)sinωτ(A2
0cosωτ +A0B0sinωτ)dτ (16)

taking the average of A0A1 over the ensemble of stars:

< A0A1 >= − 1

ω

+∞̂

−∞

f(τ)sinωτ < (A2
0cosωτ +A0B0sinωτ) > dτ (17)

Note that the operator < ... > acts only on the coe�cients of the expansions. This is due to the fact that
the average is performed on the ensemble of stars, not on time nor on any other quantity.
As a consequence of the linearity of the average operator and due to the relations 13 and 14, it is
straightforward to calculate:

< A0A1 >= −z
2
c

ω

+∞̂

−∞

f(τ)sinωτcosωτdτ (18)

The same process is to performed on the product B0B1:

< B0B1 >=
1

ω

+∞̂

−∞

f(τ)cosωτ < (A0B0cosωτ +B2
0sinωτ) > dτ (19)

the result being obviously:

< B0B1 >=
z2c
ω

+∞̂

−∞

f(τ)sinωτcosωτdτ (20)

Now, it has been proved that:

< A0A1 +B0B1 >= 0 (21)

so the terms linear in λ cancels out, as stated in the paper by Spitzer.
The remaining terms in the expansion of the variation of energy are (forgetting about the O(λ3) terms,
as in Spitzer):

∆Uz =
mω2

2
λ2(A2

1 + 2A0A2 +B2
1 + 2B0B2) (22)

There are several ways to group these terms. Obviously, �nding the way used by Spitzer himself is not
trivial, considering that there are no clues in the paper.
What we will do next is to group these terms in the most logical way possible, and to �nd out if the
expression found by Spitzer and our expression are compatible or not.
Firstly, we focus on equation 26 in the paper by Spitzer.
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+∞̂

−∞

f(τ)F (ωτ)dτ

τ̂

−∞

f(u)G(ωu)du = (23)

|
t̂

−∞

f(τ)F (ωτ)dτ

t

×
ˆ

−∞

f(u)G(ωu)du|+∞−∞ +

−
+∞̂

−∞

f(t)G(ωt)dt

t̂

−∞

f(u)F (ωu)du

The × operator is simply the usual product between real numbers. This relation is de�nitely correct and
it derives simply by using the usual formula of integration by parts:

+∞̂

−∞

df(t)

dt
g(t)dt = f(t)g(t)|+∞−∞ −

+∞̂

−∞

f(t)
dg(t)

dt
dt (24)

where:

df(t)

dt
= f(t)F (ωt) (25)

and g(t) is an integral function:

g(t) =

t̂

−∞

f(u)G(ωu)du (26)

The product of functions in 23 is evaluated at t equal to −∞ and +∞. As a consequence of the fact that
the lower limit of integration in those integrals is −∞, the evaluation performed in this limit vanishes.
So, we have:

+∞̂

−∞

f(τ)F (ωτ)dτ

τ̂

−∞

f(u)G(ωu)du = (27)

+∞̂

−∞

f(τ)F (ωτ)dτ

×
+∞̂

−∞

f(u)G(ωu)du

 +

−
+∞̂

−∞

f(t)G(ωt)dt

t̂

−∞

f(u)F (ωu)du

This relation is employed to derive the equation 27 in the Spitzer's paper. Actually, this relation, as it
is written in the paper, is wrong. The correct relation is the following one:
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+∞̂

−∞

f(τ)F (ωτ)dτ

τ̂

−∞

f(u)G(ωu)du+ (28)

+

+∞̂

−∞

f(τ)G(ωτ)dτ

τ̂

−∞

f(u)F (ωu)du =

+∞̂

−∞

f(t)F (ωt)dt

×
+∞̂

−∞

f(t)G(ωt)dt


This is a very straightforward application of the integration by parts relation:

+∞̂

−∞

f(τ)F (ωτ)dτ

τ̂

−∞

f(u)G(ωu)du+

+∞̂

−∞

f(τ)G(ωτ)dτ

τ̂

−∞

f(u)F (ωu)du = (29)

+∞̂

−∞

f(τ)F (ωτ)dτ

×
+∞̂

−∞

f(u)G(ωu)du

− +∞̂

−∞

f(t)G(ωt)dt

t̂

−∞

f(u)F (ωu)du +

+

+∞̂

−∞

f(τ)G(ωτ)dτ

τ̂

−∞

f(u)F (ωu)du =

+∞̂

−∞

f(t)F (ωt)dt

×
+∞̂

−∞

f(t)G(ωt)dt


The aim of Spitzer was clearly to prove this last relation, not the one reported in his paper, which is
likely to be a typo. In fact, the expression

+∞̂

−∞

f(τ)F (ωτ)dτ

τ̂

−∞

f(u)G(ωu)du+

+∞̂

−∞

f(τ)G(ωτ)dτ

τ̂

−∞

f(u)G(ωu)du = (30)

+∞̂

−∞

f(τ)F (ωτ)dτ

×
+∞̂

−∞

f(u)G(ωu)du

− +∞̂

−∞

f(t)G(ωt)dt

t̂

−∞

f(u)F (ωu)du+

+
1

2

+∞̂

−∞

f(τ)G(ωτ)dτ

2

does not allow a transformation in a single multiplication. By the way, the last squared term is derived
from the very same expression of integration by parts:
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+∞̂

−∞

f(τ)F (ωτ)dτ

τ̂

−∞

f(u)F (ωu)du = (31)

+∞̂

−∞

f(τ)F (ωτ)dτ

×
+∞̂

−∞

f(u)G(ωu)du

 + (32)

−
+∞̂

−∞

f(t)F (ωt)dt

t̂

−∞

f(u)F (ωu)du (33)

Shifting the second term of the right hand side to the left hand side, we have two equal expressions, so
that:

+∞̂

−∞

f(τ)F (ωτ)dτ

τ̂

−∞

f(u)F (ωu)du =
1

2

+∞̂

−∞

f(τ)F (ωτ)dτ

×
+∞̂

−∞

f(u)G(ωu)du

 (34)

Now, with all these tools we can go straight to the derivation of the �nal expression for the energy
variation.
Let us now explicit the terms in the equation 22:

2A0A2 =
2A0

ω2

+∞̂

−∞

f(τ)sinωτcosωτdτ

τ̂

−∞

(A0cosωu+B0sinωu)sinωuf(u)du+ (35)

−2A0

ω2

+∞̂

−∞

f(τ)sin2ωτdτ

τ̂

−∞

(A0cosωu+B0sinωu)cosωuf(u)du

2B0B2 = − 2B0

ω2

+∞̂

−∞

f(τ)cos2ωτdτ

τ̂

−∞

(A0cosωu+B0sinωu)sinωuf(u)du+ (36)

+
2B0

ω2

+∞̂

−∞

f(τ)sinωτcosωτdτ

τ̂

−∞

(A0cosωu+B0sinωu)cosωuf(u)du

A2
1 =

1

ω2

+∞̂

−∞

f(τ)sinωτ(A0cosωτ +B0sinωτ)dτ

2

(37)

B2
1 =

1

ω2

+∞̂

−∞

f(τ)cosωτ(A0cosωτ +B0sinωτ)dτ

2

(38)

Now we need to focus only on the �rst two terms, 2A0A2 and 2B0B2. We put the constant factors A0

and B0 inside the integrals, and take the average over the ensemble of stars, like performed before.

2A0A2 =
2

ω2

+∞̂

−∞

f(τ)sinωτcosωτdτ

τ̂

−∞

(A2
0cosωu+A0B0sinωu)sinωuf(u)du+ (39)

− 2

ω2

+∞̂

−∞

f(τ)sin2ωτdτ

τ̂

−∞

(A2
0cosωu+A0B0sinωu)cosωuf(u)du
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2B0B2 = − 2

ω2

+∞̂

−∞

f(τ)cos2ωτdτ

τ̂

−∞

(A0B0cosωu+B2
0sinωu)sinωuf(u)du+ (40)

+
2

ω2

+∞̂

−∞

f(τ)sinωτcosωτdτ

τ̂

−∞

(A0B0cosωu+B2
0sinωu)cosωuf(u)du

and hence:

< 2A0A2 > =
2z2c
ω2

+∞̂

−∞

f(τ)sinωτcosωτdτ

τ̂

−∞

cosωusinωuf(u)du+ (41)

−2z2c
ω2

+∞̂

−∞

f(τ)sin2ωτdτ

τ̂

−∞

cos2ωuf(u)du

and

< 2B0B2 > = −2z2c
ω2

+∞̂

−∞

f(τ)cos2ωτdτ

τ̂

−∞

sin2ωuf(u)du+ (42)

+
2z2c
ω2

+∞̂

−∞

f(τ)sinωτcosωτdτ

τ̂

−∞

sinωucosωuf(u)du

Let us sum together the �rst term in equation 41 and the second term in equation 42.

2z2c
ω2

+∞̂

−∞

f(τ)sinωτcosωτdτ

τ̂

−∞

cosωusinωuf(u)du+
2z2c
ω2

+∞̂

−∞

f(τ)sinωτcosωτdτ

τ̂

−∞

sinωucosωuf(u)du =(43)

4z2c
ω2

+∞̂

−∞

f(τ)sinωτcosωτdτ

τ̂

−∞

sinωucosωuf(u)du =
z2c
ω2

+∞̂

−∞

f(τ)2sinωτcosωτdτ

τ̂

−∞

2sinωucosωuf(u)du (44)

Now, recalling the trigonometric relation:

sin2θ = 2sinθcosθ (45)

and using again the expression 34, the previous expression equals:

2A0A2 =
z2c

2ω2

+∞̂

−∞

f(τ)sin2ωτdτ

2

(46)

Now, we focus our attention on the second term of the right hand side of 41 and on the �rst term on the
right hand side of 42.
Summing them:
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−2z2c
ω2

+∞̂

−∞

f(τ)sin2ωτdτ

τ̂

−∞

cos2ωuf(u)du− 2z2c
ω2

+∞̂

−∞

f(τ)cos2ωτdτ

τ̂

−∞

sin2ωuf(u)du = (47)

−2z2c
ω2

+∞̂

−∞

f(τ)sin2ωτdτ

τ̂

−∞

cos2ωuf(u)du+

+∞̂

−∞

f(τ)cos2ωτdτ

τ̂

−∞

sin2ωuf(u)du

 (48)

Now, we use the equation 28 in its correct form, not the form in the Spitzer's paper. Actually, it is very
likely that the expression was derived to handle exactly this sum of integrals.
A direct application of the formula leads to:

−2z2c
ω2

+∞̂

−∞

f(τ)sin2ωτdτ

×
+∞̂

−∞

f(τ)cos2ωτdτ

 (49)

Recalling the trigonometric formulas:

cos2θ = cos2θ − sin2θ = 2cos2θ − 1 = 1− 2sin2θ (50)

we may write:

sin2ωτ =
1− cos2ωτ

2
(51)

cos2ωτ =
1 + cos2ωτ

2
(52)

Coming back to the expression 49 and substituting:

− z2c
2ω2

+∞̂

−∞

f(τ)(1 − cos2ωτ)dτ

×

+∞̂

−∞

f(τ)(1 + cos2ωτ)dτ

 = (53)

− z2c
2ω2


+∞̂

−∞

f(τ)dτ −
+∞̂

−∞

f(τ)cos2ωτdτ

×

+∞̂

−∞

f(τ)dτ +

+∞̂

−∞

f(τ)cos2ωτdτ

 =

− z2c
2ω2


+∞̂

−∞

f(τ)dτ

2

−

+∞̂

−∞

f(τ)cos2ωτdτ

2
 =

z2c
2ω2


+∞̂

−∞

f(τ)cos2ωτdτ

2

−

+∞̂

−∞

f(τ)dτ

2


because the two mixed terms cancel out.
Then:

2B0B2 =
z2c

2ω2


+∞̂

−∞

f(τ)cos2ωτdτ

2

−

+∞̂

−∞

f(τ)dτ

2
 (54)

To summarize, at this stage of the work we have the following expression for the variation of the total
energy:
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∆Uz =
mω2

2
λ2

 z2c
2ω2


+∞̂

−∞

f(τ)sin2ωτdτ

2

+

+∞̂

−∞

f(τ)cos2ωτdτ

2

−

+∞̂

−∞

f(τ)dτ

2
+A2

1 +B2
1


(55)

There are still the expressions for A2
1 and B2

1 that needs to be worked out. Actually, this is the most
tricky calculation, because the absence of any constant A0 or B0 leads to the impossibility of using the
average over the ensemble in a direct way. Nonetheless, it is necessary to add the averaging procedure in
some ways, because the constants A0 and B0 needs to disappear.
We will perform the entire calculation only for A2

1, because for B
2
1 it is exactly the same, with obvious

modi�cations.

A2
1 =

1

ω2

+∞̂

−∞

f(τ)sinωτ(A0cosωτ +B0sinωτ)dτ

2

(56)

we multiply and divide two times for B0 (the coe�cient of sinωτ , the reason will be evident soon):

A2
1 =

1

ω2

+∞̂

−∞

f(τ)
B0

B0

B0

B0
sinωτ(A0cosωτ +B0sinωτ)dτ

2

(57)

On average, the following expression holds, due to the properties 13 and 14:

< A2
1 >=<

1

ω2

+∞̂

−∞

f(τ)
B0

B2
0

(A0sinωτ +B0sinωτ) (A0cosωτ +B0sinωτ) dτ

2

> (58)

hence, squaring the parentheses and simplifying B0:

< A2
1 >=<

1

ω2

+∞̂

−∞

f(τ)
1

B0
(A0sinωτ +B0sinωτ)

2
dτ

2

> (59)

performing the square of the parentheses:

< A2
1 >=<

1

ω2

+∞̂

−∞

f(τ)
1

B0

(
A2

0cos
2ωτ +B2

0sin
2ωτ + 2A0B0sinωτcosωτ

)
dτ

2

> (60)

Putting B0 inside the internal parentheses, we �nally obtain:

< A2
1 >=<

1

ω2

+∞̂

−∞

f(τ)

(
A2

0

B0
cos2ωτ +B0sin

2ωτ + 2A0sinωτcosωτ

)
dτ

2

> (61)

Now, a very important point: we must compute the average over the entire ensemble of objects for the
quantities A2

0/B0, B0, A0.
As also Spitzer pointed out, phases of the objects are at random, so the A0 and B0 are random variables.
In addition, as the property 13 states, they can be positive or negative.
So, let us suppose that both A0 and B0 are random variables with a uniform distribution between [−k, k],
with k > 0.
The expected value of the variable X is known to be:
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< X >=

k̂

−k

XP (X)dX (62)

being P (X) the uniform distribution in the selected range. Then, for example:

< X2 >=< B2
0 >=

1

2k

k̂

−k

X2dX =
k2

3
≡ z2c (63)

The last equality is of course the de�nition given by Spitzer.
When it comes to the expected value of the product of two variables, we have to take into account that A0

and B0 are uncorrelated, as a consequence of the following argument. If A0 and B0 were two dependent
variables, taken from the uniform distribution stated before, we would write:

< A0B0 >=< A0 >< B0 > +Cov[A0, B0] (64)

but

< A0 >=< B0 >= 0 (65)

and

Cov[A0, B0] = k2/3 6= 0

so the property 13 would not be true anymore. So A0 and B0 are uncorrelated variables.
In order to study the expected value of the variable 1

B0
= 1

X , we de�ne

Y = 1/X (66)

From the relation between the probability densities:

P (X)dX = P (Y )dY (67)

and calculating the absolute value of the derivative

|dX
dY
| = X2 (68)

we obtain:

P (Y ) =
X2

2k
(69)

The expected value of 1/B0 = 1/X is:

< Y >=< X−1 >=

1/kˆ

−1/k

Y P (Y )dY = 0 (70)

The expected values of A0 and B0 are obviously also null, so that the expected value of A2
1 is zero.

The very same argument is applicable to B2
1 , this time evidently multiplying and dividing by A0, the

coe�cient of cosωτ .
Then, on average, < A2

1 >=< B2
1 >= 0.

Finally, recalling equation 55, the variation in the total energy of the system along the z axis is:
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∆Uz =
m

4
λ2z2c


+∞̂

−∞

f(τ)sin2ωτdτ

2

+

+∞̂

−∞

f(τ)cos2ωτdτ

2

−

+∞̂

−∞

f(τ)dτ

2
 (71)

In order for this relation to be equal to the relation found by Spitzer, the following equation should hold:+∞̂

−∞

f(τ)dτ

2

= −


+∞̂

−∞

f(τ)sin2ωτdτ

2

+

+∞̂

−∞

f(τ)cos2ωτdτ

2
 (72)

which has no solution, for every possible function f(τ). In particular, with the expression of f(τ), the
previous result does not hold, giving:

4
p2

v2
=

16ω2K1

(
2ωp
v

)
2

v4
(73)

The previous, very long, derivation shows that there are at least some doubts about the accuracy of the
derivation in the original paper.
The following step has been to develop a simple simulation environment, devised especially to simulate
the case of gravitational encounters between stellar systems. This program is described in the following
section.

3 Simulation of the kinetic energy transfer: a comparison between the two
predictions

As anticipated before, the two papers yield di�erent expressions for the arguments in the kinetic energy
change of the perturbed body, as a consequence of the di�erence in the arguments of the Bessel functions.
In particular, the coe�cient in the paper by Spitzer is 4α, while in the paper by D'Onghia et al. is 2α,
where the meaning of α is described below.
In order to determine, from a simulation point of view, the analytical expression which describes more
accurately the physical environment under study, a speci�c piece of software was devised.
The system of units chosen is based on the following assumptions:

• The gravitational constant is unitary: G = 1

• The unit of mass is the mass of the Earth

• The unit of distance is the astronomical unit (AU), the average distance between the Earth and
the Sun

Having �xed these units, the time unit follows directly, as the unit of velocity.
The main parameters of the simulations executed are listed in the following table:

Distance between victim planet and central star 101

Interstellar distance 102

Velocity of the perturbing star 103

Mass ratio between the star and the planet 105

Orbital velocity of the planet Vc =
√
G (M1+M2)

rp

The expression for α is the following one:

α = Ω
R

Vsl
(74)
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where Ω = Vc

rp
is the angular velocity of the planetary motion around the central star, R is the interstellar

distance and Vsl is the velocity of the perturbing star, moving on a straight line trajectory. The complete
expression for the α coe�cient is then found to be the following one:

α =

√
M1 +M2

r
3/2
p

R

Vsl
(75)

With the previous parameters of choice, α is equal almost exactly to one. As α is linear with R, a linear
increase in the interstellar distance leads to a linear increase in the tidal parameter.
We will restrict our analysis to the case in which α is quite large and the encounter is prograde, that is, the
angular momentum of the victim planet (orbiting around the central star) and the angular momentum
of the perturber (on a straight-line trajectory) have the same sign. In this case, the expression of the
energy variation as a function of the tidal parameter α has a very simple expression. In addition, the
magnitude of the e�ect is much larger when compared to the retrograde case.
From the paper by D'Onghia et al. it is possible to see that the functional dependence of the energy
variation on α is the following one:

∆Epro ∼ α3e−2α (76)

The simulation environment has been used to estimate the variation of the kinetic energy of the planet as
a function of the tidal parameters, with α ranging from 3 to 6. The results are reported in the following
graphs:

3 4 5 6
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5
 ∆ E k i n ( α)
 K  =  2 . 1 2  + / -  0 . 0 1  ( f i t t e d )
 K  =  2  ( f i x e d )
 K  =  4  ( f i x e d )

∆E
kin

α ( a s  i n  D ' O n g h i a  e t  a l . )

F u n c t i o n :
y  =  A α 3 e - K α

Model CfA_factor_2 (Us
er)

Equation A*x*x*x*exp(-k*x)

Reduced Chi-Sqr 1.46831E-4

Adj. R-Square 0.99969
Value Standard Error

B A 47.94145 1.49108
k 2.11837 0.00954

Model CfA_factor_2 (Us
er)

Equation A*x*x*x*exp(-k*x)

Reduced Chi-Sqr 0.00186

Adj. R-Square 0.99601
Value Standard Error

B A 32.35328 0.38675
k 2 0

Fig. 2: Data points represent the kinetic energy variation of the victim planet as a function of the tidal
parameter α. The �tting functions predicted by the two papers under analysis are reported. It
seems clear that the expression predicted in the paper by D'Onghia et al. o�ers a much better �t
to the data points. Remarkably, a direct �tting of the data (without requiring the K coe�cient
to be �xed to 2 or 4) yields K = 2.12.
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 ∆ E k i n ( α)
 K  =  2 . 1 2  + / -  0 . 0 1  ( f i t t e d )
 K  =  2  ( f i x e d )
 K  =  4  ( f i x e d )

ln(
∆E

kin
)

α ( a s  i n  D ' O n g h i a  e t  a l . )

Model CfA_factor_2_l
oglinear (User)

Equation A + 3*ln(x) -K*x
Reduced 
Chi-Sqr

0.00218

Adj. R-Square 0.99885
Value Standard Error

B A 3.91136 0.05811
K 2.12591 0.01265

Model CfA_factor_2_l
oglinear (User)

Equation A + 3*ln(x) -K*x
Reduced 
Chi-Sqr

0.01641

Adj. R-Square 0.99134
Value Standard Error

B A 3.34476 0.03202
K 2 0

Fig. 3: Same data points and �tting functions as the previous one, but in log-linear scale. Here, the
almost perfect agreement with the theoretical prediction of the paper by D'Onghia et al. is even
more evident.

Improved agreements can be achieved by expanding the Bessel function to higher orders in α. In fact,
the original paper consider only the zero-th order Taylor expansion. Extending the �tting function up to
the �rst order in α, the new expression for the energy variation, in the prograde case, is found to be the
following:

∆Epro ∼ α3e−2α
(

1 +
1

4α
+

1

64α2

)
(77)

As the following graph clearly shows, the agreement between this very last expression and the data points
is excellent:
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3 4 5 6
- 4

- 3

- 2

- 1

0

1 F u n c t i o n :
y  =  A  +  3 l n ( α )  -  K α  +  D l n ( 1  +  1 / 4 α  +  1 / 6 4 α 2 )  

 ∆ E k i n ( α)
 K  =  2  ( f i x e d )

ln(
∆E

kin
)

α ( a s  i n  D ' O n g h i a  e t  a l . )

Model
CfA_factor_2_loglinear_extended (User)

Equation
A + 3*ln(x) -K*x +D*ln(1+1/(64*x*x)+1/(4*x))

Reduced Chi-Sqr 0.00396

Adj. R-Square 0.99791
Value Standard Error

B
A 2.83169 0.07559
K 2 0
D 8.96736 1.29227

Fig. 4: Same data points as before, but �tted with the new expression for the energy variation, extended
up to the �rst order in α in the Bessel function expansion. Now the agreement is excellent.

Slight deviations from the expected trend of the energy variation are evident for large values of α, where
the kinetic energy variation of the victim is much smaller and becomes comparable to the intrinsic error
in the determination of the energy shift.
From the previous simulations it could be possible to conclude that the expression for the kinetic energy
variation devised in the paper by D'Onghia et al. is able to accurately describe the gravitational encounter
in keplerian potential.

4 Planetary simulations

To conclude, we started to execute some actual planetary simulations, in order to see the e�ect on bodies
with masses and distances comparable to the real ones in a planetary system.
The exact procedure we used is summarized in the following points:

1. We set the masses of the bodies involved. In particular, we used two stars of solar mass and a
victim planet of cometary mass.

2. We set the distance between the victim body and the central star. In the example reported in this
work, a distance of 50 000 AU has been used, which corresponds to a comet at the far edge of the
Oort's Cloud.

3. We tried to determine the interstellar distance range where the prograde encounter is most e�ective.
For most e�ective we mean that it is able to change the kinetic energy of the victim and the
eccentricity of its orbit in the most e�cient way.

The relation between the total energy (potential + kinetic) and the orbital eccentricity is the following:

e =

√
1 + 2

EL2

µχ2
(78)

where L is the angular momentum, µ is the reduced mass of the system, χ = MsMp.
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In order to determine the range of R where the encounter is most e�ective, we used two di�erent param-
eters:

1. The tidal parameter, α, which describes the strength of the tidal coupling. A good range for α is
between 0.5 and 2.0. Outside this range, the energy variation associated with the tidal encounter
becomes very small.

2. The coupling coe�cient, CC, which is de�ned as the ratio between the asymptotic behavior of the
tidal force, Mpert/R

2, and α. The higher this parameter is, the better is the gravitational coupling.
Even with good values of alpha, if the CC is too small, the gravitational encounter will not be
e�ective because the magnitude of the tidal force is too small.

A very good example of this procedure is reported in the following graph, where the case of a cometary
mass placed at the distance of 50 000 AU from the center of the stellar system is discussed.
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I n t e r s t e l l a r  D i s t a n c e  ( A U )

O o r t ' s  C l o u d

E n c o u n t e r  p a r a m e t e r s
f o r  a  v i c t i m  p l a n e t  o f  
c o m e t a r y  m a s s
@ 5 0 0 0 0  A U  f r o m
t h e  S u n  ( o u t e r  b o r d e r
o f  O o r t ' s  C l o u d )

M o s t  e f f e c t i v e
d i s t a n c e  ( 3 . 2  l y )

 α= α( R )  -  T i d a l  P a r a m e t e r
 C c = C c ( R )  -  C o u p l i n g  P a r a m e t e r

P r o x i m a  C e n t a u r i

Fig. 5: Behaviors of the tidal parameter α and the coupling coe�cient CC as a function of the interstellar
distance, for a cometary mass placed at 50 000 AU from the center of the stellar system. In the
solar system, this mass should be at the far edge of the Oort's cloud. The position of the victim
and the position of Proxima Centauri, the nearest star (4.26 light years), are shown. The region
where the tidal coupling is most e�ective is shaded in blue. From this graph it is possible to say
that the bodies at the far edge of the Oort's cloud are well inside the region of tidal in�uence of
Proxima Centauri.

The following graph, instead, represents the variations in kinetic energy and eccentricities for some
interstellar distances inside the blue-shaded region of the previous graph.
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Fig. 6: Variations in kinetic energy and eccentricity for some interstellar distances inside the blue-shaded
region of the previous graph, for a cometary mass at 50 000 AU from the center of the stellar
system.

This graph demonstrates that the procedure we adopted in order to calculate the region of high-e�ciency
tidal coupling works remarkably well.

5 Conclusions

To summarize the work performed during this short-term research, the �rst period was dedicated to the
achievement of a deeper understanding of the mathematical model developed, �rst from an analytical
and then from a simulation-based point of view. In particular, the �nal outcome of this introductory
step has been the simulation environment used to execute all the simulations. The �rst step has been
to apply this simulation environment, along with the mathematical background, to the real matter of
interest, the planetary simulations. In the course of this step, a mathematical description of the tidal
interaction, based on a two-dimensional space of parameters, has been devised.
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