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1 INTRODUCTION 
Structural theory is a concentration within engineering and in particular aerospace science 

that investigates how a structure behaves under various loads.  In aerospace vehicles, in 

particular, these loads are a result of their interaction with air, non-stationary manoeuvres, 

thermal gradients, and engine motion, for example.  Under the assumption that these 

loads are known, the two main points of interests from a structural perspective are the 

deformation of the body and its stresses.  With this information it is possible to determine 

the efficiency of the structure to resist its loads when compared to maximum allowable 

values. 

 

Unfortunately, in order to evaluate the stresses and the displacements, it is necessary to 

solve a complex system of partial differential equations that, except in some cases where 

specific symmetries occur, is impossible to solve analytically and requires a numerical 

approach.  These methods start from a discretization of the structure by dividing it into a 

large quantity of elements.  For each of these elements is stated an hypothesis regarding 

the type of functions that represent the behaviour of the unknowns in the element.  The 

unknowns then become the parameters of the functions whose type is supposed to be 

known. 

 

There are a number of different methods that can be used to solve these problems, each 

with their own pros and cons.  One particular method that has been increasingly used is 

the Discontinuous Galerkin method.  With this method, it has been proven that it is 

possible to obtain better properties of convergence to zero of the error (that is, the 

difference between the real values of the stresses and the values computed numerically) 

when using higher order elements.  In other words, the error decreases more rapidly with 

increasing number of elements. 

 

One of the types of structure that is more frequently used in aerospace industry is the 

shell.  This is due to the fact that, when properly, it can resist some assigned loads with 

lower overall weight than other bulky structure types.  The study of thin shell is simpler 

than that of completely 3D structures because some hypotheses that simplify the 

mathematics can be assumed. 

 

The equation of the structural theory are, in general, non-linear.  If the hypothesis of 

small deformation is assumed, the equation can be approximated to linear and the 

problem solution becomes easier to obtain.   

 

In this work a Discontinuous Galerkin method for linear elasticity of shells is introduced, 

the results when applied to some well-known problems regarding laminated plates are 

computed and compared with those from the literature.  It is also studied a cylindrical 

case whose analytical solutions are available.  It is shown in these cases that this method 

is capable to obtain an optimal convergence.  Furthermore, it will be shown how the 

flexibility of the selection of the geometry and the kinematic hypothesis can make the 

code developed within this work an useful tool for analysis of shell structures. 
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2 LINEAR ELASTICITY 
 

The background in which this work take place is the so called linear elasticity.  The set of 

equations provided establishes the differential problem through which it is possible to 

evaluate the displacements of every point of the structure and the stresses in that point.  

The variables of the differential problem are the strains, the stresses and the 

displacements. The first two are symmetric tensor of the second order, but in the Voigt 

notation they become the following vectors: 

 

  [                  ]  

  [                  ]  

  [      ]  
 

The solution of the problem also necessitates the knowledge of the applied volume forces 

and traction on the external surface of the body.  The applied forces are vector of  three 

component: 

 

  [      ]
  

  [      ]  
 

The linear elasticity start from the assumption that the displacements in the structure are 

small and as a consequence  the relationship between the displacements and the strain is 

linear.  When a Cartesian reference system is selected the strains are defined as follows 
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The previous equations can be written more compactly in many ways. Here two different 

compact notations are introduced.  In the following chapters only the second one will be 

adopted. 

 

      

 

    
  

   
   

  

   
   

  

   
 

 

Where the following differential operator and the following matrixes are introduced: 
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The definition of the strains is one of the three sets of formulas that constitute the 

equilibrium problem together with the equilibrium equations and the constitutive 

equations.  In particular the equilibrium equations link the derivative of the stresses in the 

three Cartesian directions and the applied volume force: 
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Introducing the differential operator   a compact notation can be obtained: 
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In the boundary     where a traction   is applied it also must be valid the following: 

 

  
     

 

  
  [

         

         
         

] 

 



5 

 

The last set of equations is provided by the relationship between the stresses and the 

strains.  This relation depend on the material of the structure and it is not necessarily 

linear.  In this work it will be assumed a linear relationship between these two quantities: 

 

      

 

It is now possible to combine the previous sets of equations to obtain the strong 

formulation of the equilibrium problem in the linear approximation: 

 

{
     
     
        

          

 

subjected to two sets of boundary conditions that relate the boundary     where tractions 

are applied and the boundary     where displacements are applied: 

 

{
  

               

   ̅               
 

 

The weak form of the previous equations is called principle of virtual displacements and 

it is stated as: 
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3 COMPOSITES 
 

In the previous chapter it is shown that one of the sets of equations necessary to solve the 

equilibrium problem is the constitutive equation that relate the stresses and the strains of 

a material.  This relationship can be fully characterized only after a certain amount of 

standardized test on the selected material.  The type of relationship will depend on the 

material and in some cases it can be simpler than in others.  It is than important to 

understand which are the most common type of materials and how the relation between 

stresses and strains, that in the linear hypothesis takes the form of a stiffness matrix, is 

influenced by them. 

 

3.1 TYPES OF MATERIALS 
One of the possible classifications of the materials regards the number of symmetries in 

its mechanical behavior.  Since a stiffness matrix relate two vector of 6 components (or 

two symmetric tensor of the second order) there are in total 36 elements.  Since it can be 

proven that the stiffness matrix must be symmetric and positive defined only 21 of this 

elements are independent in the more general case.  If some symmetries take place than 

the number of independent elements is reduced.  For example the metallic materials 

usually behaves in the same way in all directions (isotropic) so only two independent 

parameters are necessary.  In the following table the main types of materials, the number 

of symmetries and the number of independent elements of the matrix are given. 

 

TYPE NUMBER OF 

SYMMETRIES 

NUMBER OF 

UNKNOWNS 

ANISOTROPIC 0 21 

MONOCLINIC 1 13 

ORTHOTROPIC 3 9 

TRANSVERSELY 

ISOTROPIC 
1+∞ 5 

ISOTROPIC ∞ 2 

 

The transversely isotropic is a type of material that has one plane of symmetry and 

infinite ones orthogonal to the previous. 

 

The composite materials is a particular class of materials that has become more and more 

commons in the last years.  This type of materials combines together characteristics of 

ceramic materials and plastic materials, in particular the purpose of a composite is to take 

advantage of the high rigidity and resistance of the ceramic materials combining them 

with polymeric materials in order to reduce the overall fragility.  The ceramic material, 

that comes in a fibrous shape is immerged in a polymeric matrix.  Accordingly to the 

length of the fibers and their orientations in the matrix it is possible to obtain different 

type of materials typically orthotropic, transversely isotropic or more rarely isotropic.  

The most common disposition, for structure components, is the composite with long 

fibers that behaves as an orthotropic material. The fibers can be oriented in the direction 

of the maximum load or in any direction that would give the structure enough resistance. 

 

3.2 STIFFNESS MATRIX 
In an orthotropic material it is possible to write the stiffness matrix as a function of some 

constants. Young modulus, Poisson ration and shear modulus.  These quantities are not 

necessarily the same for each direction and in the general case of an orthotropic material 

there are three of each with a total of 9 independent constants.  
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In the previous                  If the material is transversely isotropic in the plane 

orthogonal to the direction 3 than the following identities hold: 

 

      

        

        

    
  

        
 

 

reducing the number of independent constants to 5.  If the material is isotropic       

    ,               and             
 

      
, reducing the number of 

independent constants to 2. 

 

3.3 ROTATION OF THE STIFFNESS MATRIX 
As introduced in the previous section the stiffness matrix is only known in a special 

reference system of the material.  If one is interested in the stiffness matrix in a general 

reference, it is necessary to rotate it.  It can be demonstrated that the rotation of the 

stiffness matrix from a reference    to a reference   , with a rotation matrix  , can be 

written as follows: 
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3.4 LAMINATE 
A laminate is an assembly of layers of composite material.  The reason why such an 

assembly may be a better solution than a simple thicker monolayer is that a long fibers 

composite is very strong in the direction of the fibers but results quite weak in the 

orthogonal ones.  For such reason it may be advantageous in some cases to juxtapose 

more layers with different orientations.  In such a way it will be given extra strength to 

more than one direction. 
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4 PLATES 
When the structure considered has one of the three dimension much smaller than the 

others it is possible to obtain a simplified formulation of the principle of virtual 

displacements.  This is possible after the assumption that the displacements can be 

expressed as the product of some know functions of the variable through the thickness 

and some unknowns.  This process is also called thickness expansion of the solution or 

assumption of the kinematic hypothesis. Different kinematic hypothesis will determine 

different structural theories.  If a right hand coordinate system with    oriented 

perpendicularly to the surface of the laminate and with its origin in the middle point of 

the thickness is chosen than it is possible to write the displacements as: 

 

  
〈 〉           ∑                 

   

   

                 

 

If the known functions are piecewise in the layers of the laminate, the variable description 

will be of the type Layer Wise (LW), otherwise it will be of the type Equivalent Single 

Layer (ESL).  The LW descriptions are more accurate than the ESL especially when it 

comes to the study of laminates but they are not considered in this work.  A comparison 

of the different expansion along the thickness is given in chapter 7. 

 

An ESL theory can be named by the number of variables introduced for every direction 

of the displacements as in              
, where   stand for ESL and   denotes the use of 

the PVD.  It is possible to adopt an unique matricial expression for theory as: 

 

      

 

where   contains the known functions of the    variable and   are the unknown that will 

depend only on    and   .  If the selected order for the expansion of the components of 

the displacement are         , the matrix   and the vector   will be: 
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The size of   is       
    

    
  .  Recalling the PVD and integrating along 

the thickness it is possible to write the PVD in its bidimensional formulation: 
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In the previous equation the matrixes    ,    and     are the generalized stiffness 

matrixes and are computed as: 
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The vectors   and   are, respectively, the generalized domain force and the generalized 

boundary force: 
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It is also possible to write the strong form of the bidimensional PVD by integrating by 

parts and by considering the variational statement must be valid for any   . The strong 

form is then written as: 
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With the following boundary conditions: 
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5 DISCONTINUOUS GALERKIN METHOD 
 

It is possible to transform the problem introduced so far in a system of linear partial 

differential equations by introducing the auxiliary variable: 

 

      

  

   
                    

 

In such a way it is obtained to the following set of equations: 
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Subjected to the boundary conditions: 
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The domain is now divided in    elements.  It is introduced the space of discontinuous 

polynomials as: 

 

    {     |   |       
             } 

 

where   
   

 is the space of polynomials functions of degree    .  It is possible to define 

also the space of polynomials vector fields    
  where   denotes the size of the vectors.  

The weak form of the previous set of equations in a generic element      is obtained by 

means of the test functions             
  : 
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 ̂  and  ̂ are called the numerical fluxes  which are approximation of    and   on the 

boundary of the element       and its choice determine the selected DG method.      

and    are the solution of the weak formulation.   

 

It is evident that the boundary of the whole domain is the union of the external 

boundaries of the elements.  For this reason it is possible to write that     ⋃    
     

   , 

    ⋃    
     

    and    ⋃   
     

   .  In a similar way it is possible to define the 

union of the internal boundaries as     ⋃    
     

    that coincides with the union of 

internal edges of the mesh.   The average and jump operators are also defined: 

 

{ }    
 

 
(          ) 

 



12 

 

[[ ]]
 

   
   

   
       

          

 

where the superscript     denotes the internal edge identified as the intersection of      

and      .  Using the previous and considering that   
       

    
 it is possible to 

demonstrate that the following identity holds: 
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This equation is used to rewrite the weak formulation of the governing equations after the 

sum over all the elements.  It is than obtained the following DG formulation for the whole 

domain: 
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It is now possible to write the numerical fluxes  ̂ and  ̂.  In this work it is chosen an 

Interior Penalty formulation and the fluxes are specified as: 
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in the previous   is the penalty parameter.  Setting           and using the flux 

variables it is possible to obtain the primal form of the proposed method: 
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13 

 

          ∫
   

    
(   

   

   
      )    (   

   

   
      ) 

  

 ∫ [[ ]]
 

 
{   

   

   
      }  {

   

    
         

 } [[  ]]  
    

 ∫    
 (   

   

   
      )  (

   

    
         

 )      
    

 ∫  [[ ]]
 

 
[[  ]] 

    

 ∫        
    

 

 

 

       ̅  ̅  ̅ 

 ∫    ̅ 
  

 ∫    ̅ 
    

 ∫ (
   

    
         

 )  ̅    
    

 ∫     ̅
    

 

 



14 

 

6 SHELLS 
 

A shell is a thin structure whose mean surface is not flat.  It is possible to bring back the 

study of this type of structure to those of the flat laminates by using a transformation of 

the coordinates of the mean surface to an auxiliary reference system.  This reference 

system identify on the shell the so called curvilinear coordinates whose basis is local and 

will be defined in the following section.   It is convenient in the case of the shells to write 

the kinematic hypothesis in this auxiliary reference system.  In section 1 some helpful 

geometric relationships are shown.  In the sections 2 to 5 it is shown how the quantities in 

the PVD for plates are redefined for the case of the shells. 

 

6.1 GEOMETRIC CONSIDERATIONS 
The mean surface of the shell    can be parameterised as a function of    and   : 
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It is than possible to write the full transformation from the domain in coordinates 

         to the volume of the shell in coordinates   ,   ,    as it follows: 
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where    is the unit vector in the direction of   .  The range of variation of    is 
[    ].  In such a way the transformation of coordinates is of the following type: 

   [    ]       [    ]. It is possible at this point to define also    and   : 
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A vector    in the local basis           can be rotated in the canonical base by means of 

the matrix  : 
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6.2 KINEMATIC HYPOTHESIS 
In the case of shells it is more convenient to write the kinematic hypothesis in the local 

basis          in the  following way: 
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In such a way it is possible to separate the variation along the thickness to the variation in 

the surface.  The displacements in the reference system   can be evaluated by: 

 

   [

   

   

   

]       

 

It is interesting to notice that the basis          can also be not orthogonal.  If so, it will 

be a consequence of the not orthogonality of    and   .  Both vectors are in fact always 

orthogonal to    because of its definition. 

 

6.3 COMPUTATION OF QRS MATRIXES 
The matrix QRS can be computed in two different ways accordingly to the reference 

system used to write the principle of the virtual. The 2 possible reference systems are   

and   each one referring to a different basis.  As a consequence, the domain integral of 

the principle of virtual displacements can be written in the 2 following ways: 
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In the latter case, the reference system has to be orthogonal or the integral will not 

represent the work of internal forces.  On the other hand in the first integral the reference 

system   is always Cartesian.  

 

Reference system   

The strains and the stresses are both written in a reference  .  The relation between    

and    is the following: 

 

     
   

   
   

   

   
   

   

   
 

 

With the following matrixes: 

 

   

[
 
 
 
 
 

 

 
 
 
 
 
 

  

 
 
 
 
 
 

  

 
 
 
 
 
 

 

]
 
 
 
 
 

      

[
 
 
 
 
 

 

 
 
 
 
 
 

  

 
 
 
 
 
 

  

 
 
 
 
 
 

 

]
 
 
 
 
 

        

[
 
 
 
 
 

 

 
 
 
 
 
 

  

 
 
 
 
 
 

  

 
 
 
 
 
 

 

]
 
 
 
 
 

 

 

Substituting the expression for    and changing the derivatives in    with derivatives in 

   it is possible to write: 

 

     
   

   
   

       

   

   

   
 

 

The first derivative in this expression can be written as: 
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It is possible to define some auxiliary matrix as: 
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In such way the vector of the strains can be related to the generalized displacements   as 

follow: 

 

         

  

   
   

  

   
 

 

Recalling the following relationship between    and   : 

 

         

 

where    is the local stiffness matrix in the reference system  , it is than possible to write 

the integral on   of the PVD: 
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The matrixes             can be defined here as: 
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obtaining the following formulation for the domain integral in the PVD: 
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Reference system   
It is possible through the procedure described in Reddy et al. prove that the relation 

between    and    in the curvilinear reference system  : 
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In the previous relations the variables    and    have been introduced.  These variables 

are obtained in the following way: 
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The previous relationship can be rewritten in the following way by introducing the 

matrixes   ,   ,   ,   : 
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By means of the kinematic hypothesis                   it is possible to write the 

strains in the following way: 

 

           
  

   
     

  

   
   

  

   
  

 

The following matrixes can be defined: 

 

       

 

       

 

         
  

   
 

 

Using the relationship between         , where    is the local stiffness matrix in the 

reference system     it is than possible to define the matrixes    ,     and     as it 

follows: 
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It is than obtained the same expression as before that is true in this case only in a 

orthogonal system  . 
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6.4 WORK OF THE VOLUME FORCES 
The work of the volume forces can be written in the reference   or in the reference  .  In 

the latter case it is necessary to check if the curvilinear coordinates are orthogonal. 
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Here it is more clear why the reference   has to be orthogonal.  The two previous 

expression are equal only if: 

 

        

 

But, since        , the  previous is true only if        that means that both 

coordinates systems are orthogonal.   

 

6.5 WORK OF THE TRACTIONS 
The work of the tractions can be written as follows in the reference system   or  : 
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The 6 external surfaces of the domain are obtained by substituting in the expression for 

the transformation from     the value of the component of   that characterize that 

surface: 

 

   
         

            
              

   

   
         

            
              

   

   
         

            
              

   

   
         

            
              

   

   
         

        
    

   
         

        
    

 

The infinitesimal elements of the surfaces can be computed as: 
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The work of the external forces in the reference   is: 
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And in the reference  : 
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It is possible to combine the work of the external forces by using two functions   and  , 

defined as: 
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Or in the curvilinear system  : 
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6.6 PVD FOR SHELLS 

In the previous sections it has been shown how it is possible to modify the definitions of 

the matrixes    ,    ,     and of the external applied forces   and   in order to obtain 

the same weak formulation as the case of plates.  In this case the derivatives of the 

unknown functions   are respect the curvilinear coordinates    and    but the solution of 

the problem is the same as the one described in the previous chapter: 
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6.7 RELATION BETWEEN    AND    

In this work only orthotropic materials have been used.  For such material the stiffness 

matrix can be written with respect to the elastic constants: 
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The principal reference system of the material in which the previous matrix is defined is 

orthogonal and it is assumed here that it can be obtained by a rotation along the    axis of 

the local basis defined as follow: 

 

      

      

         
 

Using this local basis instead of         ensures that the local basis will always be 

orthogonal.  The rotation matrix from the basis          and the local basis of the 

principal direction of the material is: 

 

        

 

   [      ]            [
                
              

   

] 

 

In such a way it is possible to rotate the stiffness matrix using the rotation rule introduced 

in chapter 3. 
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7 CODE IMPLEMENTATION 
In this chapter the implementation of the theories described so far will take place.  Firstly, 

the input data is described and the conventions chosen for the various input files are 

detailed.  Secondly, it is provided some information about the routines of the so called 

pre-computation group.  Thirdly, it will be detailed the assembling and the solution of the 

linear system that derives from the differential problem.  Finally, the description of the 

plotting functions and some additional details are provided. 

 

7.1 INPUT FILES 
The information related to the simulation is introduced via six input  files.  Each one 

contains the quantitative data related to the different aspects of the analysis.  In the next 

paragraphs the various input files are described individually. 

 

Geometry 

This file contains the parametric definition of the mean surface.  The independent 

variables used are called   ,   ,   .  It is possible to define the mean surface using all the 

functions accepted by the Matlab Symbolic Math Toolbox
®
.  Here there are two 

examples of possible geometries definitions: 

 

Cylindrical surface: 

1) X_10: xi_2 

2) X_20:cos(xi_1) 

3) X_30: sin(xi_1) 

 

Flat surface: 

1) X_10: xi_1 

2) X_20:xi_2 

3) X_30:0 

 

In this files it is also specified which are the limits of the auxiliary variable    and   . 

 

Laminate 

This file contains the information related to the materials used.  They can be defined 

multiple materials and how they are combined into the finite laminate.  It is assumed that 

the laminate is the same in every point of the shell.  The angle of lamination is referred to 

the first curvilinear coordinate for a rotation positive accordingly to the curvilinear axis 

orthogonal to the mean surface. 

 

The first part of the file is about the material description.  It is provided the name of the 

material the progressive ID number, the type and the elastic constants for each of them. 

The second part relates the combination of the previously defined materials into the 

laminate.  It is described the sequence of materials, their thickness and their orientation. 

 

Displacements 

Here it is selected the expansion of the solution through the thickness and along the 

surface.  It can be chosen the type of polynomials for the expansion and their degree.  To 

what concerns the thickness expansion it can be selected a different degree for the 

different components of the displacement.  It is also important to note that the expansion 

relates the displacement in the local curvilinear coordinate. 

 

Boundary 
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This file contains the boundary conditions in terms of applied displacements, applied 

forces and mixed boundary information.  All of this input can be in the Cartesian 

reference system or in the curvilinear one but they have to be function of the curvilinear 

coordinates.  In the mixed boundary it can be selected the sequence of assigned 

generalized displacements and assigned generalized tractions as a sequence of 1 and 0 

respectively.  So for example the next statement relate the surface correspondent to 

      , in this surface the first three and the last three components of the generalized 

displacement belong to     while the 4
th

, 5
th

 and 6
th

 belong to     

 

 Surface Xi1b                        :1,1,1,0,0,0,1,1,1 

 

Mesh 

In this file the indications for the discretization of the domain are given.   In particular it 

is specified the number of Mesh element in both direction of the domain.  The mesh 

refers to the auxiliary variables    and   .  Rectangular elements are used. 

 

Solution 

Here the settings for the solution of the problem are given.  First, there are all the options 

for the computation of the matrixes    ,    and    : the reference system, the 

integration along each layer, the shear factor and the plane state option.  It can be selected 

also whether or not computing the matrixes in just one point and using that value 

everywhere else.  This option can speed up the code when it can be established that the 

matrixes are constants.  In the second part the number of points for the integration is the 

thickness, the element and the edge is chosen.  Finally, the parameters adopted for the 

method are introduced. 

 

7.2 PRE-COMPUTATIONS 
To this category belong all those functions that execute the preliminary computations 

necessary for the assembling of the final linear system. These computations include the 

generation of the mesh, the selection of the Gaussian points, the building of the function 

that contain the kinematic hypothesis and the functions related to the geometric 

transformations. 

 

PrecomputationMesh 

This function create the discretization of the domain by defining the elements and their 

connection to edges and nodes.   

 

PrecomputationGauss 

This function computes the Gaussian points for the different types of integration, i.e. 

integration through the layers, integration through the thickness, integration along one 

edge and integration in the surface. 

 

PrecomputationGeometric 

This function build symbolically the variables necessary for the transformation from one 

reference system to the other. 

 

PrecomputationDisplacements 

This function create symbolically the through-the-thickness and in the surface expansion 

of the solution.  It computes also the derivatives of the previous quantities in the 

curvilinear variables. 

 

PrecomputationOthers 

In this  routine all the pre-calculations that not belong to the previous category are 

included. 
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7.3 ASSEMBLING AND SOLUTION 
The assembling of the linear solving system necessitate 8 routines in total, divided into 3 

groups.  The first group of routines includes 8 function related to the evaluation of the 

generalized stiffness matrixes, the generalized applied forces and the assigned 

generalized displacements: 

 

 QRS 

 GeneralizedBoundaryForce 

 GeneralizedVolumeForce 

 AssignedDisplacements 

 

The second group of routines are dedicated to the integrations involved in the DG method 

and related to the internal edges, the external edges and the domain of the elements: 

 

 IntegralElement 

 IntegralInternalEdge 

 IntegralExternalEdge 

 

This three integration routines make use of the previous group of functions and of the 

Gaussian points.  The output of this routines are the contributions to the stiffness matrix 

and to the right hand side of the linear system.  While this contributions are being 

computed they are assembled together by the assembling routine the create the final 

linear system.  The linear system is then solved by the Matlab internal solver. 

 

7.4 PLOTTING FUNCTIONS 
In order to visualize the results some functions dedicated to plotting the results are used.  

This function all start from the solution of the linear system to be able to compute the 

domain variables in the various points of the shell.  These values are then used to create 

graphs and plots.  The two main plotting functions are called Shape and Plot.  The first 

one is used to display the original and the deformed configurations of the volume and of 

the mean surface, the second is used  to plot the selected variable in the selected sequence 

of points. 

 

7.5 ADDITIONAL DETAILS 
All the information computed by pre-computation group of functions is saved in an object 

of the class ModelData together with the data provided by the reading of the input files.  

An object of this class has the following properties: 

 

     Geometry 

     Laminate 

     Mesh 

     Displacements 

     Boundary 

     Solution 

     Results 
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8 RESULTS 
In this chapter they will be shown the solution obtained with the algorithm introduces so 

far to some specific problems that can be solved analytically.  Four different cases are 

considered.  In the first three it is considered a flat plate while in the last one a cylindrical 

shell. The materials used for each test are described in the relative section.   

 

The first test is the evaluation of the error computed as follow: 

 

      
||         || 

||      || 
 

 

The error is computed for different polynomial expansion in the surface and for different 

mesh sizes.  In such a way is it possible to observe the convergence of the error. 

 

The second test (only for the plates) consists in a comparison of the along the thickness 

behavior for three different theories (                ) to what regard the 

dimensionless displacements  ̅  in the point          and  ̅  in the point (       ).  The 

dimensionless displacements are computed as: 

 

 ̅     (
    

   
) 

 

 ̅    (
    

   
) 

 

In all tests the plate has a thickness of      , the boundary condition are those relative to 

the simply supported plate.  The geometry is defined as: 

 

       

       

      

   [   ] 
   [   ] 

          
 

The load is perpendicular to the surface and varies accordingly to: 

 

                     
        

 

8.1 ISOTROPIC PLATE 
The isotropic material has the following elastic constants: 
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8.2 ORTHOTROPIC PLATE 
The orthotropic material has the following elastic constants: 
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8.3 LAMINATED PLATE 
The material used here is the same as the one in the previous section and it is arranged in 

a laminate whose sequence of layers is: 

 

[    ]  
 

Each layer has a thickness of 0.0125. 

 

 

 



29 

 

 
 

8.4 CYLINDRICAL LAMINATED SHELL 
In the test for the cylindrical shell the geometry is defined as: 

 

              

       

              
   [   ]  
   [   ]  
      
      

 
The material used here is the same laminate used in  the previous test. 

 

 
8.5 OTHER TESTS 
The following images show two different geometries with fixes boundary under some 

loads.  The material is the same of the previous case.  The loads applied are defined in the 

same way for both geometries: 
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9 REMARKS AND FUTURE DEVELOPMENTS 
In this work it has been extended the DG method for linear elasticity of laminated plates 

to the case of shells.  The plate itself can be considered a shell with zero curvature.  The 

results for three cases for which the solution exists have been checked and the 

convergence properties of the algorithm have been proven.  The results already in the 

literature have been here reproduced.  It has also been studied a cylindrical shell and the 

results have been compared to the exact solutions. 

 

Possible further developments of this project are introduced in the next paragraphs: 

 

Comparison with FEM 

When an analytical solution of the problem does not exist, in order to prove the algorithm 

it is necessary to compare the solution with that obtained with another well-proven 

method.  In this framework it would be very interesting to compare the results obtained 

with the method presented here with those obtained with classical 3D FEM. 

 

Non-linear analysis 

The usage of linear elasticity equations is appropriate only under the assumption of small 

displacements.  When the loads are high enough to cause the displacements field to not 

respect the previous hypothesis the non-linear theory should be used.  The use of non-

linear elasticity equations requires a more complex definition of the fluxes and a more 

complex non-linear equation system will be obtained.  The non-linear system will require 

an iterative approach with some deep modifies to the code.. 

 

Mathematical demonstration 

The comparison of the results obtained with this method with the exact solutions 

available for some specific cases formally does not certify with mathematical rigor that 

the method works for every possible case.  A rigorous demonstration would be necessary 

for more properly asses the efficiency of the method introduced. 
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