
PEDESTRIAN TRAJECTORY FORECASTING

ASI-CAIF 2019 SUMMER STUDENT TRAINING PROGRAM WORK REPORT

Giulio Autelitano
Stanford University

Stanford Vision and Learning Lab
giulio.autelitano@stanford.edu

January 8, 2020

ABSTRACT

This final report outlines the procedures and results of my work at the Stanford Vision and Learning
Laboratory. The research focuses on pedestrian trajectory forecasting and addresses the problem of
path prediction for multiple interacting agents in a scene, which is a crucial step for many autonomous
platforms such as self-driving cars and social robots in space applications. To predict a future path
for an agent, both physical and social information must be leveraged. The current best approach to
such problem blends a social attention mechanism with a physical attention that helps the model to
learn where to look in a large scene and extract the most salient parts of the image relevant to the path.
This paper also covers the development of a framework to infer a the scene birds-eye view utilizing
the robot’s on board sensors. The problem is solved by a generative network trained on a synthetic
dataset exclusively built for this porpoise.

Keywords Deep Learning · Artificial Intelligence · Autonomous Vehicles · Social Navigation

1 Introduction

The following work has been developed at Stanford University between November and December 2019. Under the
supervision of Professor Silvio Savarese, I was part, as a Visiting Student Researcher, of the Stanford Vision and
Learning Laboratory team. The funding for the present research are provided by a Scholarship of Excellence awarded
by the Cultural Association of Italians at Fermilab (CAIF) in collaboration with the Italian Space Agency (ASI).

The research topics must be aligned with ASI’s mission and research interest which are mainly focused on space
applications. The core of the present work is the development and implementation of machine learning algorithms
to solve complex problems otherwise impossible to tackle with traditional programming methods. During the two
months time frame, the objectives have been changing mostly due to a fast-pace environment of the Stanford Vision
and Learning Laboratory forcing to re-plan the work several times. The overall experience allowed me to learn some
state-of-the-art techniques in machine learning as well as improving my coding skills. The contributions to the project
have been the creation of a package of data cleaning for the JackRabbot dataset, the completion of an algorithm to infer
the top view scene from LiDAR point-cloud exclusively utilizing robot’s on-board sensors and the set up of a network’s
structure for the inference of a semantically segmented top view scene.

Predicting the future trajectories of multiple interacting agents in a scene has become an increasingly important
problem for many different applications ranging from control of autonomous vehicles and social robots to security and
surveillance. This problem is compounded by the presence of social interactions between humans and their physical
interactions with the scene. Social robots have also big potential in space programs such as the NASA’s Astrobee.
The goal of my work at Stanford is to acquire the necessary knowledge in machine learning to enrich my aerospace
background with state-of-the-art techniques that will be adopted extensively in space applications.

G. AUTELITANO - JANUARY 8, 2020

2 Introduction to Artificial Intelligence

Artificial intelligence (AI) is a thriving field with many practical applications and active research topics. The goal of
the discipline is to make intelligent software be able to automate routine tasks, understand images, allow robots to
be fully autonomous and solve complex problems. There are many problems which are incredibly complicated for
humans to perform, such as processing high volumes of data, computing operations with high value numbers and so on.
These problems are intellectually difficult for human beings but relatively straight-forward computers problems that can
be described by a list of formal, mathematical rules once discovered. On the other hand, humans are extremely fast
at understating the context they are immersed in, avoid obstacles with elegance and understand emotions. The true
challenge to artificial intelligence is solving the tasks that are easy for people to perform but hard for people to describe
formally like problems that we solve intuitively like recognizing spoken words or faces in images. The solution to
the problems allow computers to learn from experience and understand the world in terms of a hierarchy of concepts,
with each concept defined through its relation to simpler concepts. Like all form of natural intelligence, the experience
comes after having observed a similar situation and being capable of generalizing the abstract meaning behind it and
apply the knowledge in unseen circumstances. By gathering knowledge from experience, this approach avoids the need
for programmers to formally specify all the knowledge that the computer needs. The hierarchy of concepts enables the
computer to learn complicated concepts by building them out of simpler ones. Figure 1 outlines these concepts.

Machine Learning vs Traditional Coding

“Machine Learning is a field of study that gives computers the ability to

learn without being explicitly programmed.”
Arthur Samuel, 1959

Computer

Data

Code

Output

Computer

Data

Output

Code

Traditional Coding Machine Learning

Figure 1: Traditional Coding and Machine Learning

Within the traditional coding approach, the programmer needs to manually assemble the code being exactly aware of
the underlying mathematical models to solve the problem. Every policy is explicitly written and the software engineer
has full authority over the code. The code is then run giving it an input and the computer outputs a result. If the output
is not compliant with the expected one, the code is inspected and debugged until everything works as planned. Once a
satisfactory result has been achieved, the code can be implemented and always described in each part. On the other
hand, machine learning works bypassing the need of explicitly define the mathematical models of the problem. The
software engineer takes care of building a proper network structure and clean the input data. The code, in this case, can
be thought as an output product of the process. The data is fed trough the network and the output results compared to a
ground truth. The learning process tries to tune the network’s parameters to match the desired results. In this case, it is
not possible to fully understand what the complicated network is doing. The underlying reasoning remains obscure and
almost no control can be exerted over the process. It is thus clear how the input data is crucial for the network to be able
to generate a meaningful output.

To sum up, it is possible to solve a problem in two ways: the first, by manually assigning the mathematical model which
the problem rests on, or exploiting some machine learning technique to take advantage of a huge set of data. Both
these approaches present pros and cons. Machine learning relief the software engineer from the need of coding some
policies that may be overwhelming in situations like image recognition. It would be cumbersome to manually write an
algorithm to identify a human face in a picture. Due to the high complexity of the problems that this papers aims at
solving, namely the pedestrian trajectory forecasting, relying on machine learning seems the obvious, if not the only,
path to follow.

3 Autonomous Vehicles Forecast

Being my work focused on human trajectory forecasting, a brief description of the market that will mainly take
advantage of such break-trough is fundamental.

As reported by McKinsey & Company, autonomous vehicles (AVs) represent a major innovation for the automotive
industry. While high levels of uncertainty currently surround the issue, the ultimate role that AVs could play regarding

2

G. AUTELITANO - JANUARY 8, 2020

the economy, mobility, and society as a whole could be profound. The widespread use of AVs could profoundly affect
a variety of industry sectors. Upon mass adoption of AVs, drivers will have more time for everything. AVs could
free as much as 50 minutes a day for users, who will be able to spend traveling time working, relaxing, or accessing
entertainment. The time saved by commuters every day might add up globally to one billion hours. It could also create
a large pool of value, potentially generating global digital-media revenues of billions per year for every additional
minute people spend on the mobile Internet while in a car. Another great advantage of AVs regards the parking problem.
AVs could change the mobility behavior of consumers reducing the need for parking space. Multiple factors would
contribute to the reduction in parking infrastructure. For example, self-parking AVs do not require open-door space
for dropping off passengers when parked, allowing them to occupy parking spaces that are 15 percent tighter. By mid
century, the penetration of AVs could ultimately cause vehicle crashes in the United States to fall from second to ninth
place in terms of their lethality ranking among accident types. Today, car crashes have an enormous impact on the US
economy. For every person killed in a motor-vehicle accident, 8 are hospitalized, and 100 are treated and released from
emergency rooms. The overall annual cost of roadway crashes to the US economy was $212 billion in 2012. Taking
that year as an example, advanced ADAS and AVs reducing accidents by up to 90 percent would have potentially saved
about $190 billion.

One of the challenges of the widespread diffusion of AVs is the necessity to make such vehicles reliable and safe.
Pedestrian trajectory forecasting is crucial for road safety and this paper will focus on the techniques to tackle this
challenge.

4 Machine Learning in Space Application

Artificial intelligence today plays a fundamental role in the space sector. There are many current and future applications,
designed to overcome limits otherwise considered insurmountable, such as perfect orientation in space or on a planet
without GPS or immediate analysis of huge amounts of data. A striking example is Phi-Sat, a cube-sat that will take
pictures of our planet from a few hundred kilometers of altitude. Before sending them to Earth, however, it will be the
same AI that will look at the acquired photos and decide independently which ones to discard because they are not
useful for scientific purposes. Thus sending images (terabytes of data every day) will be lighter and faster. Further post
processing done by artificial intelligence algorithms continues on the ground, analyzing the images coming from the
satellites, from which it is possible to extrapolate every single change, even millimetric, that takes place on the Earth’s
surface and potentially allow for disasters to be avoided and significantly increase the safety of the population.

Furthermore, social robots could also play a crucial role for space missions. Forecasting human behavior is a necessity
when dealing with human-robot interactions. AI is thus the only achievable solution to solve the problem and my work
aims at developing the necessary algorithms to tackle this challenging problem.

4.1 NASA’s AstroBee

A very interesting research project of social robots in space application comes from NASA’s Astrobee. The robot should
help astronauts in focusing on high-priority tasks while the Astrobee takes care of low-priority duties. It will allow
astronauts to reduce the time spent on routine duties, leaving them to focus more on the things that only humans can
do. Working autonomously, or via remote control, the robots are designed to complete tasks such as taking inventory,
documenting experiments conducted by astronauts with their built-in cameras or working together to move cargo
throughout the station. In addition, the system serves as a research platform that can be outfitted and programmed to
carry out experiments in micro-gravity helping to learn more about how robotics can benefit astronauts in space.

The Astrobee system, shown in Figure 2, consists of three cubed-shaped robots, a control software and a docking station
used for recharging. The robots use electric fans as a propulsion system that allows them to fly freely through the
micro-gravity environment of the station. Cameras and sensors ensures that a perceptions algorithms can be rub and
enables the autonomous navigation of the surrounding. The robots also carry a perching arm that allows them to grasp
station handrails in order to conserve energy or to grab and hold items. Researchers will be able to use Astrobee to
carry out investigations that will help to develop technology for future missions. Since the robots are modular and can
be upgraded, the system gives researchers and scientists diverse capabilities for performing a wide range of experiments
inside the station.

3

G. AUTELITANO - JANUARY 8, 2020

Page 2 of 17 Astrobee Guest Science Guide IRG-FF029

1 Introduction

Welcome! We’re the NASA Astrobee Research Facility, and our primary goal is to provide
guest scientists like you with a powerful new platform for zero-gravity robotics research
inside the International Space Station (ISS). Astrobee’s success depends on your creativity,
and we’re excited about helping you fly your own experiments. You can always find our
up-to-date contact information and the latest on project schedule and status on our web
site: https://www.nasa.gov/astrobee.

The Astrobee Research Facility will maintain three identical free-flying Astrobee robots
on the ISS. After the Astrobees are launched and commissioned in 2018, they will replace the
SPHERES robots that have been operating on the ISS since 2006 (Fig. 2). Over the years,
the SPHERES have been among the most-used payloads on the ISS, supporting dozens
of experiments from a variety of guest scientists. In the next section, we’ll talk about
past SPHERES experiments as possible inspiration for your future research on Astrobee.
Compared to SPHERES, the Astrobee robots will offer many new capabilities and will require
less astronaut time to support, so we hope the new facility will be able to fly experiments
much more often.

Astrobee

Corner	Bumpers	Impeller	

Nozzle	

Laser	Pointer	

Speaker/Microphone	 Ba;ery	
Terminate	Bu;on	

Power	Switch	

Wake	Bu;on	
Forward	Flashlight	

Status	LEDs	

8/23/2017	 SPHERES/Astrobee	Working	Group	 4	

SciCam	
NavCam	

HazCam	

Touch	Screen	

Signal	Lights	

SpeedCam	

Arm	

DockCam	
PerchCam	

AR	Flashlight	

Figure 1: An Astrobee robot.

Each Astrobee is shaped like a cube 12.5 inches (32 cm) wide (Fig. 1). It can fly au-
tonomously throughout most of the US section of the ISS interior, but cannot operate outside
the ISS. It is propelled by a pair of battery-operated fans, and can autonomously return to
a docking station to recharge, so it can perform most activities without requiring any astro-
naut support. It carries a suite of six cameras, a two degree-of-freedom (DOF) arm with a
gripper that can grasp ISS handrails and other objects (Fig. 2), and three payload bays that
provide power and data for guest science hardware. It can autonomously execute hours-long
plans (for example, sensor surveys) or be teleoperated live from the ground or by astronauts.

Astrobee 2017-08-31

Figure 2: NASA’s Astrobee

Robots will play a significant part in mission to return to the Moon as well as other deep space missions. Social
robots such as Astrobee, have the capacity to become caretakers for future spacecraft, working to monitor and keep
systems operating smoothly while crew are away. The space social robots must cooperate with astronauts and be able to
anticipate their intentions not to collide or interrupt their work. It is thus fundamental to forecast human behaviors in a
similar approach as ground autonomous vehicles adopt. The techniques adopted to forecast pedestrian trajectories are
usually restricted to a flat plane. The extension to the third dimension is trivial, given that a comprehensive dataset
is available to train the networks on. Astrobbe could thus be a precious source of information recording astronauts
movements in micro-gravity environments. Sharing the same sensors of ground robots, it will be possible to utilize the
same algorithms trained on the dataset recorded by Astrobee.

5 Machine Learning Basics

In this section I will focus on the basic concepts that constitute the fundamental principles of neural networks [1]. The
difficulties faced by systems relying on hard-coded structures suggest that AI systems require the ability to acquire their
own knowledge, by extracting patterns from raw data. This capability is known as machine learning. The introduction
of machine learning enables computers to tackle problems involving knowledge of the real world and make decisions
that appear subjective. This section will cover the elementary AI computation unit, namely the artificial neuron, how
the latter is used to build a neural network and the description of the underlying algorithms that make the network be
able to learn patterns and decision policies.

5.1 Artificial Neuron

The basic element of a neural network is called artificial neuron named after it’s natural counterpart, the biological
neuron. An artificial neuron aims at simulating a biological neuron outputting a value (usually bounded) called activation.
Figure 3 shows a general artificial neuron which is a computation cell that takes multiple inputs and performs a two-step
calculation to obtain the final output. The first operation is computed by summing all the inputs xj , each multiplied by
a weight wj , and subsequently adding a bias b to the final result. This step is known as weighted sum and its result is
indicated with the quantity z. At this stage in the process, the partial output can, in theory, store any real value. At first,
all the weights wj and biases b are randomly initialized from the normal distribution. It must be noted that, while only a
single bias belongs to each neuron, the weights are in the same number of the neuron inputs. The learning process will
aim at assigning the best weights and biases for the network to perform as desired. By varying the weights and the
biases, it is possible to get different models of decision-making and thus a different output.

4

G. AUTELITANO - JANUARY 8, 2020

Perceptron: ML Elementary Unit

A perceptron is the simplest neural network: a computational model of a

single neuron

𝑧

𝑥1
𝑥2
𝑥3
𝑥4

𝑥𝑛

𝑤1

𝑤𝑛

𝑏

𝑓 𝑧 𝑎 𝑧 =෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖 + 𝑏

Figure 3: Machine learning unit element: Artificial Neuron

To bound the partial output z, and more in general to obtain control over it, the weighted sum is fed trough an activation
function f(z). The activation function output is usually called activation and the relative neuron is said to fire. There is
a large variety of activation functions found in the literature, but the most common are the sigmoid, the tanh and the
ReLU functions. The activation function mathematical expressions are expressed below:

σ(z) ≡ 1

1 + e−z
tanh(z) ≡ ez − e−z

ez + e−z
ReLU(z) ≡ max(0, z)

The sigmoid function is continuous and derivable. It bounds the neuron activation between 0 and 1 with continue values
in between. To bound the output between -1 and 1 the tanh function is used. The tanh possess an anti-symmetric
propriety and again, is both continuous and derivable. Finally, the ReLU is the most aggressive function in the positive
domain outputting the untouched value of z, or zero in case z is negative. As it can be seen from the above equation,
the ReLU activation function presents a discontinuity in its derivative at the origin.

The activation functions have thus all different behaviors with respect to their definition, but even more important for
the backpropagation algorithm is the shape of their derivatives (cfr. Eq.12 and Eq.13). Both the sigmoid and the tanh
functions have a zero value derivatives at the extremes of their domains which, as will be seen in the next paragraph,
could initiate the vanishing gradient problem posing serious threat to learning speeds.

To recap, an artificial neuron is a mathematical function and works by accepting multiple numerical values as inputs
and outputting a unique numerical value, namely the neuron activation value. The artificial neuron usually takes its
name after the activation function that utilized, e.g. if a sigmoid function is adopted, the neuron is said to be a sigmoid
neuron. Artificial neurons are then connected to build an artificial neural network with multiple layers containing each
multiple neurons. The next paragraph will focus on how the network is assembled and the underlying mathematical
principles restricted to multilayer perceptrons.

5.2 Neural Networks

In this paragraph I will present the basic network architecture of a multilayer perceptron (MLP). As suggested by the
name, the elementary units of the network are artificial neurons that are arranged in a series of layers starting from
the inputs to the final outputs as shown in Figure 4. When building such a network the first step is assigning the input
layer which must share the same dimension of the input data. As an example, if we want to feed a picture, within an
image recognition problem, the input layer dimensions will match the image pixels number. In the case of pedestrian
trajectory forecasting, the input will be the coordinates of each pedestrian so that the number of input neurons will be
2N , where N is the maximum number of agents in the scene. On the other hand, the final output must match the size of
the expected result. With respect to the image recognition problem, the number of output neurons matches the number
of class labels we are interested in. For the trajectory forecasting problem the output size will match the input one.

5

G. AUTELITANO - JANUARY 8, 2020

Artificial Neural Networks

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

Perceptrons are fully connected to create a network with hidden layers.

Weights and biases are initialized randomly

𝑎1
𝐿

𝑎2
𝐿

ℎ1 ℎ2

• 𝑎𝑗
𝑙 = 𝑓 σ𝑘𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙

• 𝒂𝑙 = 𝒇 𝑾𝑙𝒂𝑙−1 + 𝒃𝑙

Figure 4: Multi-layer perceptron

To complete the network’s architecture, the programmer is faced with the decision of selecting the number of hidden
layers, and for each, the relative number of neurons. A hidden layer is any layer which lays between the input and
output layers. Figure 4 shows a network with two hidden layers. Each circle represents a single neuron and is connected
to each and every neuron in the preceding layers as well as the following. This architecture is called fully connected for
obvious reasons.

Each neuron in layer l outputs a value alj which depends on the activations of the previous layer, in case of a sigmoid
activation function follows:

alj = σ

(∑
k

wl
jka

l−1
k + blj

)
(1)

After the network’s architecture has been chosen, the first step is to initialize the network assigning every weight and
biases to each neuron. This process is often done randomly, choosing the values from a normal distribution. The input
is then fed trough the leftmost layer (input layer) and forwarded trough the whole network to obtain the final output in
the rightmost layer. The output of the network is the product of the so called feed-forward process. Obviously, the
result of such a network will be completely random due to the initialization of the weights and no predictions can be
done. The learning process will take care of tuning all the weights and biases to obtain consistent outputs aL(x) as
close as possible to the desired target y(x).

5.3 Loss Function

The goal is to find an algorithm to select all the weights and biases so that the output from the network approximates
y(x) for all training inputs x. To quantify how well the network is achieving this target it is possible to define a cost
function (e.g. mean square error):

C(w, b) =
1

2n

∑
x

∣∣∣∣y(x)− aL(x)
∣∣∣∣2 (2)

In the above expression w denotes the collection of all weights in the network, b all the biases, n is the total number of
training inputs, aL(x) is the vector of outputs from the network when x is input, and the sum is over all training inputs,
x. In Eq.2, C is the quadratic cost function also indicated as L2. The cost C(w, b) becomes small and approaches zero
precisely when the output aL(x) is approximately equal to the ground truth y(x), for all training inputs, x. The training
algorithm performs well if it can find weights and biases so that C(w, b) ≈ 0. There are many loss functions available
in literature and the choice of the most appropriate one depends entirely on the problem to be tackled. The scheme of
the loss function evaluation is shown in Figure 5.

6

G. AUTELITANO - JANUARY 8, 2020

Error Function

The loss function tracks network’s performance and it is used to compute

gradients for the learning process.

𝑎1
𝐿

𝑎2
𝐿

𝒂𝐿(𝒙)

𝒚(𝒙)

𝑦1 𝑦2

𝐶 𝑾, 𝒃
𝐶 𝑾, 𝒃 =

1

2𝑛
෍

𝒙

𝒚 𝒙 − 𝒂𝐿 𝒙
2

Figure 5: L2 Loss function scheme

The final aim of the training algorithm is thus to minimize C(w, b) as a function of the weights and biases. In other
words, to find a set of weights and biases which make the cost as small as possible. To solve this problem the stochastic
gradient descent method will be exploited along with the backpropagation algorithm.

5.4 Stochastic Gradient Descent and Back Propagation

Once the cost function has been defined, it is necessary to outline a procedure to minimize it with respect to all weights
and biases (parameters) that are present in the network. The problem is thus a minimization problem where the goal
is to reach the global minimum of the function. In general, C, has a great number of variables which depends on the
network structure and complexity. To ease the problem definition, it is helpful to imagine C as a function of only
two variables, namely h1 and h2. It is possible to chose a random starting point (thus a random set of h1 and h2) and
compute locally the value of the cost function. Next, it is possible to change, by a little arbitrary amount, both the
variables to lower the value of C and keep iterating this process until a global minimum has been reached. Recall that
where the cost function is at a minimum, and thus approaching zero, the network is performing such that its output is
the closest to the ground truth as possible. The process described above is called gradient descent and has been proven
to be the most feasible way to compute the operation when the number of variables is to high to allow for an analytical
solution of the problem. What described above is just a method of reasoning without a proper mathematically rigorous
description. To fill the gap it is possible to approximate C with a first order expansion as expressed below:

dC(h1, h2) ≈ ∂C

∂h1
dh1 +

∂C

∂h2
dh2 (3)

The goal is to choose the correct dh1 and dh2 to lower the cost function and reach its minimum. To make such a choice,
it helps definign dh to be the vector of changes in h, dh = (dh1, dh2)T , where T is the transpose operation, turning
row vectors into column vectors. Another useful quantity to be defined is the gradient of C being the vector of partial
derivatives with respect to each variable:

∇C =

(
∂C

∂h1
,
∂C

∂h2

)T

Given the above definitions it is possible to express the change of the cost function as the inner product of the cost
function gradient,∇C and the the vector of changes, dh, as follows:

dC ≈ ∇C · dh (4)

In the above equation∇C relates changes in h to changes in C. It is now necessary to choose dh such that dC < 0 to
descent towards the global minimum. A very elegant solution, proven also to be the most effective, is to introduce a
learning rate parameter, η, and multiply the gradient of C by the latter:

dh = −η∇C, (5)

7

G. AUTELITANO - JANUARY 8, 2020

Combining Eq.4 with Eq.5 it is possible to express the change of the cost function as dC ≈ −η∇C∇C = −η||∇C||2
which is finally negative and compliant with the requirement on dC. Next, it is necessary to update the values of both
h1 and h2 assigning the new value of vector h′ as

h′ = h+ dh = h− η∇C (6)

Then, keeping to rely upon this update rule, another step is carried out. Following this procedure for a relative high
number of steps it is possible to reach the global minimum of the function C. To make gradient descent work correctly,
it is mandatory to choose the learning rate η to be small enough so that the first order approximation holds. On the other
hand, it is not practical to assign η an excessively small value, since that will make the changes dh tiny, and thus the
gradient descent algorithm will work slowly.

The above example has dealt with the particular case of a two variables cost function. Real networks have thousands,
even millions, of parameters. The natural extension of the analytical description is to generalize the equations to account
for an arbitrary number of weights and biases. It is straight forward to introduce the same quantities for a cost function

C = C(h1, ..., hk) of k variables. In this case, it is possible to express the gradient as∇C =
(

∂C
∂h1

, ..., ∂C
∂hk

)T
living

in the Rk space. Once the gradient of C has been expressed, Eq.4 trough Eq.6 still hold and are used to update the
parameters at each iteration of the gradient descent process.

The presented gradient descent approach hides a number of challenges. One of those is the problem of scalability
of the method when the training set of inputs is very large. The computation of the gradients for each input could
take a long time making the learning occurs slowly. By recalling the quadratic cost in Eq.2 it is obvious that it’s an
average over costs for individual training examples. Thus, to compute the gradient ∇C it is necessary to compute the
gradients for each training input, x, and then average them. An idea called stochastic gradient descent can be used to
speed up learning. The idea is to estimate the gradient ∇C by computing ∇Cx for a small sample of randomly chosen
training inputs. By averaging over this small sample it turns out that we can quickly get a good estimate of the true
gradient∇C, and this helps speed up gradient descent, and thus learning. To make these ideas more precise, stochastic
gradient descent works by randomly picking out a small number m of randomly chosen subset of training inputs called
mini-batch. Provided the sample size m is large enough the average value of the the gradient will be roughly equal to
the average over all the gradients for the full training set of dimension n:∑

x∇Cx

m
≈
∑

x∇Cx

n
= ∇C (7)

where the second sum is over the entire set of training data. It is thus possible to estimate the overall gradient by
computing the gradients just for the randomly chosen mini-batch of size m. The weights and biases for the networks are
thus updated at each iteration making the network learn faster then computing the gradients for the whole set of inputs.
With respect to the notation used when introducing the MLP network, it is possible to update the weights as follows:

wk → w′k = wk −
η

m

∑
j

∂Cxj

∂wk
(8)

bl → b′l = bl −
η

m

∑
j

∂Cxj

∂bl
(9)

When all the mini-batches have been evaluated and the training set of inputs is exhausted, it is said to complete an
epoch of training. The process keeps going with another epoch until the number of prefixed epochs is reached. It is
worth noting that the learning rate η is a hyper parameter that must be assigned in advance.

So far it has been described how neural networks can learn their weights and biases using the gradient descent algorithm.
Yet, is not clear how to compute the gradient of the cost function. In the following lines I will describe a fast algorithm
for computing such gradients, an algorithm known as backpropagation1. It is worth recalling the notation used to
describe a fully connected network. It will be used wl

jk to denote the weight for the connection from the k-th neuron

1The backpropagation algorithm was originally introduced in the 1970s, but its importance wasn’t fully appreciated until a
famous 1986 paper by David Rumelhart, Geoffrey Hinton, and Ronald Williams. That paper describes several neural networks where
backpropagation works far faster than earlier approaches to learning, making it possible to use neural nets to solve problems which
had previously been insoluble. Today, the backpropagation algorithm is the workhorse of learning in neural networks.

8

G. AUTELITANO - JANUARY 8, 2020

in the (l − 1)-th layer to the j-th neuron in the l-th layer. The same notation is applied to biases. Sticking to the
aforementioned notation, the activation alj of the j-th neuron in the l-th layer is related to the activations in the (l−1)-th
layer by the equation:

alj = σ

(∑
k

wl
jka

l−1
k + blj

)
(10)

where the sum is over all neurons k in the (l − 1)-th layer. The same equation can be expressed in a more elegant way
by using the matrix notation: al = σ(wlal−1 + bl). In this case wl is the weight matrix on layer l, the bias vector is
set to be bl, and the activation is function of the preceding layers’ activations. It is clear to see the activations in the
previous layer influences the activation of the subsequent neuron. Another useful quantity is the weighted sum of the
input at layer l defined as zl = wlal−1 + bl. With respect to the previously defined quantities it is possible to express
the activation value as a the output of al = σ(zl) where σ is a general activation function.

The goal of backpropagation is to compute the partial derivatives the cost function C with respect to any weight w or
bias b in the network. To compute the desired quantities it is useful to introduce δlj , which is called the error in the
j-th neuron of the l-th layer. Backpropagation will give a procedure to compute the error δlj , and then will relate it to
∂C/∂wl

ij and ∂C/∂blj . By definition the error is computed as the derivative of the cost function with respect to the
weighted sum:

δlj ≡
∂C

∂zlj
(11)

Backpropagation is based around four fundamental equations. Together, those equations give a way of computing both
the error δlj and the gradient of the cost function. Following the chain rule of partial derivatives it is possible to obtain
the first equation of the backpropagation algorithm:

δLj =
∂C

∂aLj
σ′(zLj) (12)

Where the letter L indicates the last layer of the network being its output. Recall that while building the network’s
architecture, the programmer also assigns a given and known cost function. Furthermore, all the activation functions
have an analytical form such that it is possible to compute their derivatives. Given all of the above it is possible to
directly compute the quantity δLj when the input has been fed forward and an output obtained. Eq.12 can be also
expressed in matrix form: δL = ∇aC � σ′(zL) where � represents the tensor product element-wise.

It is now clear how to compute the error in the final layer, the problem now shifts to the computation of the error in the
generic layer l given the known error of the last layer. Again, by exploiting the chain rule it is possible to link the error
of a layer with the following one as follows:

δl =
(
(wl+1)T δl+1

)
� σ′(zl) (13)

where (wl+1)T is the transpose of the weight matrix wl+1 for the (l + 1)-th layer. By combining Eq.12 with Eq.13
it is possible to compute the error δl for any layer in the network. The process starts by using Eq.12 to compute δL ,
then apply Eq.13 to compute δL−1, then the same process continues until the firs layer is reached. This backwards
computation is the reason of the name backpropagation. Finally it is possible to link the error to the partial derivatives
of the cost function with respect to both weights and biases:

∂C

∂blj
= δlj . (14)

∂C

∂wl
jk

= al−1k δlj (15)

The above equations describe the analytical formulation of the backpropagation algorithm which is based upon Eq.12
trough Eq.15. Once the learning rate η has been chosen, the above equations, along with Eq.8 and Eq.9 allows the

9

G. AUTELITANO - JANUARY 8, 2020

gradient descent algorithm to be effective in lowering the value of the cost function, thus tuning the network parameters
in the learning process.

To sum up, the learning process occurs feeding an input, from the mini-batch, trough the network obtaining a first output
to be evaluated against the ground truth. Next, the error of the final layer is directly obtained and the backpropagation
takes place in order to compute the errors for each layer. The final step updates the parameters relying on the stochastic
gradient descent algorithm. Once the process has been completed for each mini-batch, the next epoch is evaluated and
so on.

Another idea for the computation of the gradients is the direct application of the definition of derivative. A small
change in on parameter will eventually affect, trough a feed-forward step, the cost function, and repeating the process
for each weight and bias it would be possible to obtain the whole gradient ∇C. Unfortunately, such a procedure
becomes impossible once the parameters grow in numbers. On the other hand, backpropagation works obtaining the
every gradients all at once at each feed-forward step. The power of this algorithm is exactly this ability, namely to
dramatically speed up the process2 of calculation, thus learning.

6 Advanced Algorithms

In this section i will focus on some of the algorithms that are used for trajectory forecasting applications. I will also
describe some advanced methods for analyzing images and generate new visual contents. While the basic concepts of
neural networks hold, some new techniques have been developed to obtain better results and make machine learning
more capable not only of understanding, but also at generating new content from scratch.

6.1 Generative Adversarial Networks

Generative Adversarial Networks are a subset of generative models which are able to produce an entirely new content
never observed before. This is in contrast with classification networks that map a given input to a prefixed labeled
class. GANs typically consist of two networks (Figure 6) that compete with each other: a generator, and a discriminator.
While the generator learns to generate realistic samples from input data, the discriminator is trained to discern which
samples are real, and which are generated, thereby engaging in a two-player min-max game.

Generative Antagonist Networks

𝑥1 𝑥𝑛

𝑧𝑛

𝒛

𝑧2

𝑧1

𝑦1 𝑦𝑛

The network is trained until the discriminator cannot distinguish real data

from fake data.

Figure 6: GAN block scheme

The generator is a neural network that takes as input a random set of variables (usually white noise) and returns, once
trained, an output to match the target. Being the task very complex (e.g. generating a photo-realistic picture) the clever
idea behind GANs relies on training the generator with another neural network called discriminator. The latter takes as
input the generated data and returns as output the probability of this data to be real or synthetic. Both the networks are
then trained jointly with opposite goals. The generator tries to fool the discriminator, so the generative neural network
is trained to generate data as close to the real as possible. On the other hand, the discriminator is forced to detect
synthetic data. At each iteration of the training process, the weights of the generative network are updated in order
to increase the realism of the output, whereas the weights of the discriminator are updated to maximize the precision
of the classification between real and fake. Both networks try to beat each other (thus "adversarial") improving their

2This speedup was first fully appreciated in 1986, and it greatly expanded the range of problems that neural networks could solve.
That, in turn, caused a rush of people using neural networks.

10

G. AUTELITANO - JANUARY 8, 2020

performances at each iteration. From a game theory point of view, this is called a mini-max two-players game, where
the equilibrium state corresponds to the situation where the generator produces data indiscernible from the ground truth
and the discriminator predicts the validity of the output with a 50% of probability. To formalize the above description it
is necessary to introduce some notation. The generator takes a random input z ∼ N (µ = 0, σ2 = 1) and returns as
output the generated data xg = G(z). On the other hand, the discriminator randomly accepts as an input either a true
data xt or the generated data xg and outputs the probability D(x) of the input being real or fake data. The expected
value of the discriminator is:

E(G,D) = Ex [logD(x))] + Ez [log(1−D(G(z)))] (16)

The goal of the generator is to fool the discriminator whose objective is to distinguish between true and generated data.
So, when training the generator, the goal is to maximize this error while minimizing it for the discriminator:

max
G

min
D

E(G,D) (17)

To sum up, GANs can be trained to generate realistic outputs that mimic real data. The generated data is not a copy of
the dataset but closely matches its patterns. For the present work, GANs will be used to generate pedestrian trajectories
to be as close as possible to the real ones.

6.2 Recurrent Neural Networks

Every network analyzed above is time independent. This means that each output won’t be influenced by the time history
the network has gone trough. For tasks that are time dependent this approach poses high limitations. Humans don’t
start their thinking from scratch every second. Any input that humans receive is elaborated also as a function of the
previous instants in time thus relying on temporal history. Traditional neural networks can’t do this, and it seems like
a major shortcoming. Recurrent neural networks address this issue. They are networks with loops in them, allowing
information to persist. Once the network has been trained, in traditional MLPs, the input is fed trough each layer with a
feed-forward step to obtain the desired output. If another input is fed, the output won’t be aware of the previous input
thus abandoning any temporal connection. In some applications, such temporal history is fundamental. As an example,
in speech recognition, humans read acquiring knowledge from previous words in the sentence and building the meaning
of the phrase upon that information. For trajectory forecasting is fundamental to preserve the temporal history of each
agent in the scene to be able to predict their future steps.

Recurrent neural networks are intrinsically time dependent due to their chain structure. The output of the network is
then also used as an input for the next step thus allowing for time history to be propagated. This chain-like nature
reveals that recurrent neural networks are intimately related to time sequences. The standard recurrent neural networks
(RNN) lack the capability of storing an information for long period of time, and this could be a great limitation in some
cases. Long Short Term Memory networks are a special kind of RNNs, capable of learning long-term dependencies.
The basic chain structure of an LSTM network is shown in Figure 7.

𝑥𝑡−1

Long-Short Term Memory (LSTM) Networks

Humans don’t start their thinking from scratch every second. Recurrent

Neural Networks (RNN) take account of history to understand the context

𝜎 tanh𝜎 𝜎

tanh

ℎ𝑡−1

𝜎 tanh𝜎 𝜎

tanh

ℎ𝑡

ℎ𝑡+1

𝐶𝑡+1

𝜎 tanh𝜎 𝜎

tanh

ℎ𝑡+1

𝐶𝑡−1

𝑥𝑡 𝑥𝑡+1

Figure 7: LSTM Network

LSTMs are explicitly designed to avoid the long-term dependency problem. All recurrent neural networks have the
form of a chain of repeating modules of neural network. They are based upon four neural network layers, interacting

11

G. AUTELITANO - JANUARY 8, 2020

in a very special way. In Figure 7, each line carries an entire vector, from the output of one node to the inputs of
others. The circles represent pointwise operations, while the red boxes are neural network layers. Lines merging
denote concatenation, while a line forking denote its content being copied. The key to LSTMs is the cell state, the
horizontal line running through the top of the diagram. It runs straight down the entire chain, with only some minor
linear interactions. It’s very easy for information to just flow along it unchanged [2]. The cell state propagates the
context information throughout all the blocks preserving information in time. The LSTM does have the ability to
remove or add information to the cell state, regulated by structures called gates. Gates are a way to optionally let
information through. They are composed out of a sigmoid neural net layer and a pointwise multiplication operation.
The sigmoid layer outputs numbers between zero and one, describing how much of each component should be let
through. A value of zero means deletes a content, while a value of one leaves the cell state untouched. An LSTM has
three of these gates, to protect and control the cell state.

Long-Short Term Memory (LSTM) Networks

𝐶𝑡−1

ℎ𝑡−1 ℎ𝑡

𝐶𝑡

𝑓𝑡

𝜎 tanh𝜎

𝑖𝑡

𝜎

tanh

𝑜𝑡

ℎ𝑡

ҧ𝐶𝑡

We analyze a single block of an LSTM network

• 𝑥𝑡 = Input Vector
• 𝐶𝑡 = Context Vector

• 𝑓𝑡 = 𝜎 𝑊𝑓 ⋅ 𝑥𝑡, ℎ𝑡−1 + 𝑏𝑓
• 𝑖𝑡 = 𝜎 𝑊𝑖 ⋅ 𝑥𝑡, ℎ𝑡−1 + 𝑏𝑖
• ҧ𝐶𝑡 = tanh 𝑊𝐶 ⋅ 𝑥𝑡, ℎ𝑡−1 + 𝑏𝐶
• 𝑜𝑡 = 𝜎 𝑊𝑖 ⋅ 𝑥𝑡, ℎ𝑡−1 + 𝑏𝑖

• 𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ ҧ𝐶𝑡
• ℎ𝑡 = 𝑜𝑡 ∙ tanh(𝐶𝑡)𝑥𝑡

Figure 8: LSTM unit cell

With respect to Figure 8, the first step of an LSTM is to decide what information to delete from the cell state. This
decision is made by a sigmoid layer called the “forget gate layer.” It accounts for ht−1 and xt, and outputs a number
between 0 and 1 for each element in the cell state Ct−1 according to the following equation:

ft = σ (Wf · [ht−1, xt] + bf) (18)

The next step is to decide what new information to store in the cell state. This step is divided in two parts. First, a
sigmoid layer called the “input gate layer” decides which values to update. It uses as input the concatenated vector of
both ht−1 and xt like the forget layer. Next, a tanh layer creates a vector of new candidate values, C̄t, that could be
added to the state. Both this operations are expressed below:

it = σ (Wi · [ht−1, xt] + bi) (19)

C̄t = tanh (WC · [ht−1, xt] + bC) (20)

Once the above quantities have been computed they will be combined to create an update to the state. To update
the cell state Ct−1 to new value Ct is just a matter of simple operations already possessing every intermediate result.
The previous steps already decided how to perform such update. To compute Ct, Ct−1 is multiplied by ft, deleting
(forgetting) the information that have been considered not useful. Then is possible to add the value C̄t · it which is the
new candidate value, scaled by how much to update each state value. To sum up, the updated cell state is computed as
follows:

Ct = Ct−1 · ft + C̄t · it (21)

The last step is to generate the final output. This output will be based on the cell state, but will be a filtered version.
First, a sigmoid layer is computed to decide what parts of the cell state to output. Then, we put the cell state through

12

G. AUTELITANO - JANUARY 8, 2020

tanh (to push the values to be between -1 and 1) and multiply it by the output of the sigmoid gate, so that we only output
the parts we decided to.

6.3 Convolutional Neural Networks

Convolutional neural networks have become the standard in image recognition. This section aims at describing how the
convolutional process extracts the most relevant features in an image. In a standard MLP network an image should be fed
by creating a column vector storing all the pixel intensity values concatenating adjacent rows. It is clear that the spatial
information of an image is compromised. Furthermore, a small tilt of the input picture could fire completely different
neurons not allowing for a good generalization of the image recognition process. To avoid such problems convolutional
neural networks have been developed. Convolutional neural networks use three basic ideas: local receptive fields,
shared weights, and pooling.

It is helpful to think about convolutional network as having the first layer composed by square neurons with same size
of the input image.

Convolutional Neural Networks

CNNs are the standard in image processing for artificial intelligence. The

output of CNNs layers generalizes the most common patterns highlighting

key aspects

𝑥𝑗𝑘

𝑐𝑗𝑘

× 4
3 × 3 (𝑙 × 𝑚)

𝑐𝑗𝑘 = 𝜎 ෍

𝑙

෍

𝑚

𝑤𝑙,𝑚𝑥𝑗+𝑙,𝑘+𝑚 + 𝑏

(a) Convolution step 1

Convolutional Neural Networks

CNNs are the standard in image processing for artificial intelligence. The

output of CNNs layers generalizes the most common patterns highlighting

key aspects

𝑎𝑗𝑘 = 𝜎 ෍

𝑙

෍

𝑚

𝑤𝑙,𝑚𝑎𝑗+𝑙,𝑘+𝑚 + 𝑏

𝑥𝑗𝑘

𝑐𝑗𝑘

(b) Convolution step 2

Figure 9: Convolution process

The input pixels will be connected to subsequent layers of hidden neurons. In CNN not every input pixel is connected to
every hidden neuron. Instead, connections have a small area, localized regions of the input image. To be more precise,
each neuron in the first hidden layer will be connected to a small region of the input neurons, in Figure 9 a 3×3 region
(kernel), corresponding to 9 input pixels. That region in the input image is called the local receptive field for the hidden
neuron. Each connection learns a weight. And the hidden neuron learns an overall bias as well. The next step is to slide
the local receptive field across the entire input image as depicted in Figure 9. For each local receptive field, there is a
different hidden neuron in the first hidden layer called feature map. And so on, building up the first hidden layer. Note
that the size of the first hidden layer is reduced by the following formula:

O =
I −K
S

+ 1 (22)

Where O is the size of the output, I the input one, K is the kernel’s dimension and S is the stride which is the number
of pixels that the kernel is slid of across the input picture at each step.

As been said each hidden neuron has a bias and K ×K weights connected to its local receptive field. To introduce the
shared biases and weights it is possible to refer to the next equation:

cij = σ

(
4∑

l=0

4∑
m=0

wl,maj+l,k+m + b

)
(23)

Where σ is the neural activation function, b is the shared value for the bias and wl,m is an array of shared weights. This
means that all the neurons in the first hidden layer detect exactly the same features, just at different locations in the
input image. As an example imagine that the weights and bias are such that the hidden neuron can pick out a vertical
edge in a particular local receptive field. That ability is also likely to be useful at other places in the image. And so it is
useful to apply the same feature detector everywhere in the image. The map from the input layer to the hidden layer
is thus called feature map. The shared weights and bias are often said to define a kernel. The programmer have the
ability do define both the number of convolutional layers and the number of feature maps to extract from each layer. It
is common to start from a single picture with the highest dimension and proceed along the network with the extraction

13

G. AUTELITANO - JANUARY 8, 2020

of multiple feature maps. The network will learn things related to the spatial structure. Another advantage of sharing
weights and biases is that it greatly reduces the number of parameters involved in a convolutional network.

In addition to the convolutional layers just described, convolutional neural networks also contain pooling layers. Pooling
layers are usually used immediately after convolutional layers. What the pooling layers do is simplify the information
in the output from the convolutional layer by extracting, in max-pooling, the maximum activation in the kernel input
region.

6.3.1 Transposed Convolution

The previous paragraph focused on convolutional networks. The main idea is to extract relevant feature maps containing
the most relevant information of the original image. The feature maps have reduced dimensions and are usually in
great number. The transposed convolution relies on the opposite procedure. It takes as an input some feature maps
and upscale them to generate a bigger and richer image. The transposed convolution can then be exploited to generate
images from fragmented pieces of visual information.

7 Path Prediction

Path prediction consists in forecasting the future positions of agents (e.g. humans or vehicles) within an environment
[3]. Formally defined, human trajectory forecasting is the problem of predicting the future navigation movements of
pedestrians (namely their x and y coordinates on a 2D map representation), given their prior movements and additional
contextual information about the scene. It is assumed that the route taken by each pedestrian is influenced by the
location of other humans and the physical constraints on its path, as well as its own goal, which is to some extent
encoded in its past course of movements. For any particular scene, the inputs to the model are twofold [4]: the scene
information, in the form of a top-down view image of the scene, It, and the previously observed trajectory within the
scene of each of the N currently visible pedestrians:

Xi =
{(
xti, y

t
i

)
∈ R2|t = 1, ..., tobs

}
∀i ∈ {1, ..., N}

Given all above inputs and the ground truth future trajectory for each pedestrian between tpred and tobs time steps, i.e.:

Yi =
{(
xti, y

t
i

)
∈ R2|t = tobs + 1, ..., tpred

}
∀i ∈ {1, ..., N}

the goal is to learn the underlying distribution which can generate feasible samples for their future trajectories, i.e.:

Ŷi =
{(
x̂ti, ŷ

t
i

)
∈ R2|t = tobs + 1, ..., tpred

}
∀i ∈ {1, ..., N}

7.1 Baseline: S-GAN

To obtain a baseline for comparison I used, as a benchmark, the trajectory forecasting algorithm S-GAN [5]. The
aforementioned algorithm does not take into account the physical context of the scene thus not requiring any image as
an input. It works analyzing the time history of each agent in the scene storing for each the coordinates with respect to
a fixed reference frame. The positions are then encoded utilizing an LSTM encoder and the forecast trajectories are
generated using a GAN module. When published, S-GAN was the state-of-the-art algorithm and it has been trained
and optimized using available datasets including ETH [6] and UCY [7]. These datasets consist of real-world human
trajectories with rich human-human interaction scenarios. The evaluation metrics are the following:

1. Average Displacement Error (ADE): Average L2 distance between ground truth and our prediction over all
predicted time steps.

2. Final Displacement Error (FDE): The distance between the predicted final destination and the true final
destination at end of the prediction period Tpred.

To further refine the baseline and obtain a more realistic scenario, the model has been trained on the JRDB dataset. To
do so I had to create a package to allow the dataset to be red by S-GAN converting each pedestrian label (manually
labeled) to a readable x and y coordinate converted in meters. The package is called JRDB Converter and allows also to
convert LiDAR point-cloud scans to a top view image as explained later in the report. The converted data has been used
as the training set for the model with the results expressed in the Table 1.

14

G. AUTELITANO - JANUARY 8, 2020

Training Set
JRDB-In JRDB-Out ETH (worst) ZARA2 (best)

E
va

lS
et JRDB-In 0.08 / 0.18 0.08 / 0.18 0.14 / 0.28 0.12 / 0.24

JRDB-Out 0.07 / 0.15 0.06 / 0.13 0.14 / 0.29 0.12 / 0.24
ETH 1.66 / 2.85 1.02 / 1.82 0.72 / 1.31 0.52 / 0.94
ZARA2 0.64 / 1.28 0.37 / 0.78 0.32 / 0.67 0.31 / 0.64

Table 1: S-GAN Baseline results

The dataset have been split in two different sets: 80% has been allocated for the training while the remaining 20% has
been used to validate the model and obtain the final results in Table 1. The JRDB Dataset has been further split in two
blocks dividing indoors from outdoors scenes. In the table above each column represents the the training set which the
networks has been trained on. Next, each model is tested on the evaluation set as expressed by each row. Every training
set name derives from the dataset that has been trained on while the Eval Set refers to the evaluation set been used to
obtain the results. There is no appreciable difference between the models trained with indoors data with respect to
outdoor ones. I highlited in bold the results obtained using the new JRDB dataset resulting in outstanding performances
outperforming the best models of S-GAN.

7.2 SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints

One of the current state of the art algorithms to forecast pedestrian trajectories is SoPhie. I decided to exploit this
algorithm that take as an input the top view scene as seen from an above drone not usually available in real case
scenarios. The algorithm addresses the problem of path prediction for multiple interacting agents in a scene, which is
a crucial step for many autonomous platforms such as self-driving cars and social robots. SoPhie is an interpretable
framework based on Generative Adversarial Network (GAN),which leverages two sources of information, the path
history of all the agents in a scene, and the scene context information, using images of the scene. To predict a future
path for an agent, both physical and social information must be leveraged. SoPhie blends a social attention mechanism
with a physical attention that helps the model to learn where to look in a large scene and extract the most salient parts of
the image relevant to the path. Whereas, the social attention component aggregates information across the different
agent interactions and extracts the most important trajectory information from the surrounding neighbors. SoPhie also
takes advantage of GAN to generates more realistic samples and to capture the uncertain nature of the future paths by
modeling its distribution [8]. The architecture of the network is shown in Figure 10.

SoPhie: Top-View Approach

SoPhie algorithm considers both physical and social constraints using as

input the top view scene and coordinates of each pedestrian

Pre-trained

CNN

D
a

ta
s
e

t

Agents state

𝑋𝑖
1:𝑡 = 𝑥𝑖 , 𝑦𝑖

LSTM

Encoder

…

Attention Module GAN Module

Physical Att

Social Att

Physical Att

Social Att

1st Agent

N-th Agent

C
o
n
c
a
te

n
a
ti
o
n

G
e
n
e
ra

to
r

P
re

d
ic

te
d
 A

g
e
n
ts

 S
ta

te

z

D
is

c
ri

m
in

a
to

r

Feature Extraction Module

𝐼𝑡

Figure 10: SoPhie block diagram

As shown in the block architecture one of the network’s input is a birds-eye view RGB picture obtained from a stationary
drone flying above the scene. A more realistic case scenario doesn’t allow to take advantage of such solution. The next
steps are thus to build a consistent input for SoPhie to allow for on-board sensors to be the only source of information
for the network. The proposed solution is detailed in the next section.

8 Trajectory forecasting using on-board sensors

The trajectory forecast problem is too complex to be solved with the conventional coding. Trying a direct and analytical
approach to infer pedestrian movements would require a profound understanding of human behavior and an underlying

15

G. AUTELITANO - JANUARY 8, 2020

analytical foundation to build the code upon. On the other hand, a machine learning approach could provide a better
result by analyzing a huge set of data of real pedestrian trajectories to extract a plausible generalization policy. Recent
works on the problem utilize as an input a top down view of the scene, plus the coordinates of each pedestrian extracted
with various methods. The network will use as the visual input both the information coming from the cameras and
LiDAR sensors. The agents coordinates are inferred by an online algorithm (e.g. YOLO [9]) from the same images and
fed to the network for every agent in the scene. The extended proposed architecture is shown in Figure 11.

SoPhie: Extension to first-person view

Utilizing onboard sensors to forecast pedestrian interaction is crucial for

social navigation. Primary sensors are RGB cameras and LiDAR.

J
R

D
B

C
o

n
v
e

rt
e

r

Agents state

𝑋𝑖
1:𝑡 = 𝑥𝑖 , 𝑦𝑖,

LSTM

Encoder

…

Attention Module GAN Module

Physical Att

Social Att

Physical Att

Social Att

1st Agent

N-th Agent

C
o
n
c
a
te

n
a
ti
o
n

G
e
n
e
ra

to
r

P
re

d
ic

te
d
 A

g
e
n
ts

 S
ta

te

Noise z

D
is

c
ri

m
in

a
to

r

Feature Extraction Module

𝐼𝑡 , 𝐿𝑡

Head orientation (e.g. Detectron2)

Θ𝑖
1:𝑡

Future work

Figure 11: SoPhie Extension block diagram

The usage of a birds-eye view image as the main visual input stems form the necessity of avoiding any occlusion
problem that would arise if on board sensors would be used. For real life application though, it is unpractical to deploy a
drone to follow the robotic agent broadcasting the live top view image as seen from above. It is then necessary to adopt
a method of obtaining the same information utilizing only the provided sensors. With this in mind, I faced the problem
of deciding which path to cover: one possibility could be modifying one of the state-of-the-art trajectory forecasting
algorithm to rely exclusively on on-board sensors, the other possibility would be reconstructing a synthetic birds-eye
view of the scene. I decided to adopt the latter approach being the birds-eye view a valuable source of information
also for other tasks a robot could be asked to complete (e.g. following a human agent, obstacle avoidance, etc.). A
comprehensive and omniscient top view scene allows for a deeper awareness of both physical and social context. This
information can then be fed to any trajectory forecasting network that requires a top view scene as an input (e.g. SoPhie,
Social-BiGAT, S-GAN).

8.1 TopNet: a birds-eye view generative network

To obtain a more informative input for the trajectory prediction algorithms, a segmented birds-eye view can be generated
using on-board sensors as an input. The most difficult part of the process is the hallucination of occluded areas. Human
beings are extremely capable in such a task, mainly exploiting prior experiences to infer the most probable scene. If a
human is standing behind a table with his lower body occluded we can easily infer legs position with some confidence.
The same concept applies with the physical environment like hallucinating a cross road approaching an intersection or
infer a building shape from a side view. The goal is to make the network able of hallucinating occluded areas training
the former with some ground-truth omniscient maps.

The approach chosen to solve the current problem has been modeling a supervised convolutional neural network as
shown in Figure 12.

16

G. AUTELITANO - JANUARY 8, 2020Top View Net Architecture

Figure 12: Top View Net Block Diagram

The network is composed of two separate branches: one for the first person view input (3 channels RGB) and the other
branch to account for LiDAR information. The architecture is based on a feature extractor module, utilizing a first
series of convolutional layers, a concatenation node, and a series of shared de-convolutional layers to generate the final
visual output. The camera input is used to obtain a rich and dense information regarding the observed scene. It will
be used to extract the semantic features of the context thus obtaining a first estimation of sections to be hallucinated
(e.g. a door opened on a corridor will trigger the hallucination, to some extent, of the non observable corridor parts).
Furthermore, the first person view also serves to generate the textures to be used in the top view representation. On the
other hand, the point-cloud extracted from LiDAR can be projected on a two dimensional plane obtaining a first rough
estimate of the shape of the environment. The latter information will serve, once concatenated with the RGB input, as a
support to reconstruct a richer birds-eye view.

The input to the network is thus a 4-channels pseudo-image as shown in Fig. 13. The four channels consist in the
standard RGB input plus an additional fourth layer being the inferred top view coming from LiDAR point cloud.

(a) RGB First Person View (b) MONO Top View

Figure 13: Network 4-Channels Input

As it can be seen, the input images don’t share the same dimensions. Furthermore, while the camera image have a fixed
resolution, the LiDAR projected top-view can be tuned on demand utilizing some hyper parameters. The programmer
can chose both the resolution and the extension, in meters, of the area of interest. This freedom and could arise some
problems during real time applications. The laser rays can reach very far distances if not blocked by any solid surface.
In Figure 13b one can observe that some rays have traveled a big distance due to the presence of several windows in the
scene. It is clear that those "external" boundaries are not relevant for local motion planning. It will be necessary thus
to implement a policy to be able of cropping the picture to a relevant portion of the whole point-cloud. For the first
attempts a naive approach has been followed by manually selecting the area given the specific environment.

17

G. AUTELITANO - JANUARY 8, 2020

To train the network and rely on the stochastic gradient descent method it is mandatory to create an automated procedure
to feed both the input and the desired target to proceed with the supervised training. The first approach followed
consisted in ignoring at first the dataset and focusing on the automation problem to feed the network.

A custom data-loader has been coded to load and automatically create the mini batches for the following training steps.
The datalaoder also performs all the necessary transformations on the input images, like cropping and normalization.
Furthermore, the dataloader is also capable of augmenting the dataset slightly rotating or deforming the pictures. This
capability is extremely handy to augment the number of data points and avoid the network to learn some peculiarities
that may be present in the original dataset. Another technique of data augmentation is the horizontal flip of the images.
The input is constructed by the concatenation of the three RGB channels of the first person view with the mono top
view channel. Every channels is thus converted to a torch tensor, normalized and cropped to the same sizes to obtain a
consistent input. The final input is shown in Figure 14.

0 100 200 300 400

0

100

200

300

400

Red channel

0 100 200 300 400

0

100

200

300

400

Green channel

0 100 200 300 400

0

100

200

300

400

Blue channel

0 100 200 300 400

0

100

200

300

400

Top view channel

Figure 14: Normalized Input Channels

In the above picture the yellow color represents areas with high intensity values, while blue zones are the darkest. The
input is normalized meaning that each intensity value is bounded between an interval of -1 and 1.

To start debugging the code and conduct a sanity check of the network’s architecture, as a proof of concept, a first
training has been conducted using a full black picture as a target. This naive test’s only purpose is to obtain a visual proof
of the output of the network, if any. The network has been coded using the PyTorch library [10] to take advantage of the
powerful implementation of the backpropagation algorithm. The fed input consists in a 4-channels (pseudo-image)
generated using random white noise extracted form the normal distribution z ∼ N (µ = 0, σ2 = 1) as seen in Figure
15. Each pixel in every input channel has an intensity value between −1 and 1 divided in 255 intervals (8-bit images).
The same proprieties applies to the real image inputs.

0 100 200 300 400

0

100

200

300

400

Channel 1

0 100 200 300 400

0

100

200

300

400

Channel 2

0 100 200 300 400

0

100

200

300

400

Channel 3

0 100 200 300 400

0

100

200

300

400

Channel 4

Figure 15: Random noise 4-channels input

Following the first branch of the network shown in Figure 12 the input goes trough a series of convolutional layers to
extract the feature maps. Next, the information is used to generate a final output by means of some de-convolutional
layers. Giving the network a black target picture to be recreated it should be able to learn all the weights of the
convolutional layers to output an empty image being forced by a L2 mean square error function against the target.
In this example, the loss is computed on pixel intensity values on the final output. The output image should become

18

G. AUTELITANO - JANUARY 8, 2020

darker for each training epoch given that the back propagation algorithm is working properly. The hope is to obtain a
completely black image after a relative small number of epochs. The results of such trial can be evaluated in Figure 16.

0 10 20 30 40

0

5

10

15

20

25

30

35

40

Output

0 10 20 30 40

0

5

10

15

20

25

30

35

40

Target

Figure 16: First training results: Output vs Target

Unfortunately, the results of the test were not satisfactory. Even tough the network is capable of providing a visual
output, the latter is not consistent with the target by any means. This may be due to a poor convergence of the loss
function caused by the vanishing gradient problem. Furthermore, the time necessary to complete 500 training epochs
was around 17 minutes on the local workstation. To speed up the process, a GPU-based approach has been adopted.
Pytorch allows for a simple implementation of CUDA, resulting in outstanding time performance improvements as
shown in Figure 17 where the GPU approach (blue line) has cut the computation time to 2 minutes per training.

Figure 17: Loss during training: GPU (blue line) vs CPU (orange line)

Further analysis on the code revealed that the the final layer neuron outputs were not bounded within the same range of
the target image resulting in a non consistent loss evaluation. This problem has been tackled utilizing a tanh activation
function applied to the final layer. To improve network’s performances the following steps were made: adding ReLU
activation functions between the de-convolution layers and a final tanh layer to bound the final layer output in the range
O ∈[−1, 1]. The final bulk of the code, relative to the network’s architecture, is presented below using the PyTorch
implementation. The convolutional layers are built passing multiple parameters such as: the number of input channels,
the number of output feature maps, the kernel size, the stride and the padding. The following MaxPool layers accept, as
the required input, the size of the kernel, while the ReLU activation is a pre-built function not requiring any additional
inputs. All the inputs are considered as hyper-parameters and will be eventually tuned on the final network architecture
based on the results on the real dataset. The forward function, which is the one that propagates the input trouh all the
network’s layers, is defined as the sequence of the encoder and the decoder applied to the input x being the 4-channels
pseudo-image. PyTorch is capable of condensing the main part of the network in a very limited number of code lines
resulting for me the best approach to the problem.

class autoencoder(nn.Module):
def __init__(self):

super(autoencoder, self).__init__()

19

G. AUTELITANO - JANUARY 8, 2020

self.encoder = nn.Sequential(
nn.Conv2d(4, 16, 3, stride=3, padding=0),
nn.ReLU(True),
nn.MaxPool2d(2, stride=2),
nn.Conv2d(16, 8, 3, stride=2, padding=1),
nn.ReLU(True),
nn.MaxPool2d(2, stride=1))

self.decoder = nn.Sequential(
nn.ConvTranspose2d(8, 16, 3, stride=2),
nn.ReLU(True),
nn.ConvTranspose2d(16, 8, 5, stride=3, padding=0),
nn.ReLU(True),
nn.ConvTranspose2d(8, 3, 2, stride=2, padding=0),
nn.Tanh())

def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x

Furthermore, an improvement in the target picture consists in utilizing the input itself to obtain a more realistic
case. Eventually, the full semantic top view image will be utilized as a target. The previous changes constitute a
naive implementation of a convolution auto-encoder network. An auto-encoder is the combination of an encoder
function, which converts the input data into a different representation, and a decoder function, which converts the new
representation back into the original format. Autoencoders are trained to preserve as much information as possible when
an input is run through the encoder and then the decoder. An input image is forwarded trough the convolution layers to
extract the most important feature maps and then a series of transposed convolution layers are used to up-sample the
feature maps and reconstruct the image with less but more salient information. The input images have been chosen
among a subset of the JackRabbot Dataset. The loss function is again a L2 Mean Square Error function comparing the
output and target picture pixels intensity on a single channel. In Figure 18 we can appreciate a substantial improvement
compared to previous approach. Two sets of images are shown: the first picture is the target and the following is the
network’s output (inferred image).

0 100 200 300 400

0

100

200

300

400

0 100 200 300 400

0

100

200

300

400

0 100 200 300 400

0

100

200

300

400

0 100 200 300 400

0

100

200

300

400

Figure 18: Autoencoder first-person view results

It’s worth stressing that the output of the network is the result of a learning process trying to extract the most relevant
feature from the input image (e.g. sharp corners, edges, etc.) and reconstruct a final output with the more relevant
information. The first example of Figure 18 highlights the physical boundaries and successfully identifies a person in
the scene. Unfortunately the networks is not able to provide the head orientation of the agent which could be a problem
in a social navigation problem. In the following example the physical boundaries are still correctly inferred as well
as the number and position of each agent in the scene. The results suggest that the proposed architecture is a good
candidate for the final network. To further confirm this statement, another test has been conducted on the top view scene.
The main idea is to help the network with a high fidelity birds-eye view provided by a two dimensional projection of the
point-cloud extracted for LiDAR sensors. The image should help the network understanding the rough shape of the
environment and the first person view will eventually add the semantic information to the scene. The results of the same
network are shown in Figure 19.

20

G. AUTELITANO - JANUARY 8, 2020

.

0 100 200 300 400

0

100

200

300

400

0 100 200 300 400

0

100

200

300

400

0 100 200 300 400

0

100

200

300

400

0 100 200 300 400

0

100

200

300

400

Figure 19: Autoencoder top view with 2d convolution

The results clearly show that the network is not capable of extracting the information fed trough the projected point-cloud
image. This is probably due to a noisy and poorly detailed image. The two-dimensional convolution layers are not able
to generate representative feature maps like edges or corners. Being the input image a monochromatic picture, and
providing only a single information, namely the distance from the sensor, it is possible to convert the two dimensional
tensor in a 1-dimensional vector layer storing the pixel intensity values of the whole image. PyTorch allows for a
easy conversion of the two-dimensional tensor to a vector using the torch.view() method . The resulting vector is built
concatenating each row of pixels in a single column vector. Given a n× n pixels square image, the resulting column
vector will have dimensions n2 × 1. The input is then fed forward trough a series of one-dimensional convolution
layers and the subsequent one-dimensional de-convolutions to generate the final output. To visualize the final image it
is necessary to convert the output vector to a tensor with the same size of the desired output. In Figure 20 it is possible
to evaluate the results of the new network architecture.

.

0 100 200 300 400

0

100

200

300

400

0 100 200 300 400

0

100

200

300

400

0 100 200 300 400

0

100

200

300

400

0 100 200 300 400

0

100

200

300

400

Figure 20: Autoencoder top view with 1d convolution

With respect to the former architecture the present architecture is now able to reconstruct the top view image although
with some introduced noise. The output images have yet less structure and definition if compared to the target. It is
worth recalling that the LiDAR image is only supposed to help the network obtaining a better understanding of the
physical constraints so that the most important features to be highlighted are the outline of the environment like walls.
As a comparison, in Figure 21 the loss evolution are evaluated for both first-person and top-view images. It can be
seen that the first-person converges at a slower speed and achieves a higher error value. This is probably due to more
complex information to be analyzed compared to a mono chromatic and sparse image like the LiDAR counter part.

The above results show that the first convolutional networks are capable of extracting key features from the inputs. It is
safe to assume that a concatenation of the output of the convolutional layers can be used to be the input of the transposed
convolution layer series for the generation of a richer birds-eye scene. The goal is now to provide the network with
a good dataset that provides both a photo-realistic FPV as well as a LiDAR representation of the scene. It is then
crucial to obtain a ground truth for the birds-eye view to be used as target in the learning process. The optimization of
network’s hyper parameters will then be conducted on the final architecture to obtain the best possible results. The
aforementioned dataset will be constructed using a Gibson Environment [11] as reported ahead.

21

G. AUTELITANO - JANUARY 8, 2020

.

0 200 400 600 800
Iteration Step

10 2

10 1

100

Lo
g

Lo
ss

Loss
Top View
First Person View

Figure 21: Loss plot

A further development for the presented approach takes advantage of a third information that the LiDAR sensor is
capable of providing, namely the occupancy information. The basic concept behind an occupancy grid map is the
representation of three different domains: the free space, the solid boundaries and the unknown space. A LiDAR sensor
projects n laser rays, by the spinnign of a mirror, and when a non transparent surface is hit, the ray bounces back and the
relative point distance is stored in the point-cloud as a tuple of coordinates ~ri = (xi, yi, zi) with respect to the sensor
position. The full pointcloud at time t can be described as follows: Pt = {~ri}ni=1, where n is the number of projected
rays. It is possible to distinguish the three domains as follow:

• r̂i < ~ri: Free space (White)
• r̂i = ~ri: Solid boundary (Black)
• r̂i > ~ri: Unknown space (Grey)

For every domain the visual map can be constructed using a unique color. The white space is free, the solid boundaries
are represented with black lines (thickness is set in advance) and the unknown areas are shown in light gray. This
representation allows to add one more information, namely the unknown domain, to the LiDAR top view image as
shown in Figure 22. The white rays that seem to escape from the images are often generated because of windows unable
to back-scatter the laser beams. The occupancy grid map representation is clearly more valuable and "human-friendly"
representation of the top view scene. Feeding more information to the network is a key aspect to obtain better results.
The better the initial guess is the more easily the ouptut will be consistent with the grund truth.

Bytes Cafe

-5 0 5

-8

-6

-4

-2

0

2

4

6

Forbes Cafe

-10 -5 0 5 10
-10

-5

0

5

10
Huang

-10 -5 0 5

-6

-4

-2

0

2

4

6

8
Jordan Hall

-6 -4 -2 0 2 4

-6

-4

-2

0

2

4

Figure 22: Occupancy Maps

Still, the same problems of the previous approach arise with this representation such as the area of interest to be set
a-priori and the resolution of the desired image. In the above picture every scene has been scaled to nicely fit for a
clearer visual result.

8.2 Gibson Environment Dataset

To train the network, and allow it to hallucinate hidden parts f the scene, it is crucial to provide it with a good dataset for
the trainign process. Unfortunately, the JRDB dataset does not provide a ground truth reference for the top view scene.
Usually every trajectory forecasting algorithm uses as an input a birds-eye view to overcome occlusion problems. To

22

G. AUTELITANO - JANUARY 8, 2020

make the network able to generalize it is necessary to provide the same input structure of the real robot, plus a ground
truth reference as a target for the loss function. To obtain the datased, a Gibson Environment has been used to output
the required images.

Gibson environment is a platform to explore active and real-world perception. It is composed of a graphic engine and a
physics simulator. To extract the data needed to train the network I only focused on the renderer. The package provides
a big set of indoor environments that have been recorded stitching recorded images on top of a 3D mesh of the buildings.
The result is a photorealstic 3D environment which is explorable. The package already comes with a pre-built camera
view that will be exploited as the first person view input. The main adjustment to such a camera has been the tuning of
the parameters to account for different focal lengths and angle of view to match the robot’s on-board camera. The other
robot’s sensor to simulate is the LiDAR. To create a synthetic LiDAR the 3D mesh was utilized. The final necessary
ingredient to complete the dataset is the groundtruth. I utilized an orthogonal top view centered on the robot position on
the ground. To generate a big amount of data, I had to automate a navigation path and record each synthetic sensor
input in addition to the top view. The dataset is thus assembled recording the robot navigation path trough multiple
environments to obtain the necessary diversity of scenarios. As a proof of concept I recorded the inputs from a static
scene to obtain some preliminary results and evaluate their validity. The results are shown in Figure 23.

Occupancy Grid

-3 -2 -1 0 1 2

-1

0

1

2

3

4

Top view render

500 600 700 800 900 1000

700

800

900

1000

1100

1200

Top view traversability

500 600 700 800 900 1000

700

800

900

1000

1100

1200

First person view

100 200 300 400

100

200

300

400

Figure 23: Gibson environment dataset: proof of concept

In Figure 23 the first picture represents the occupancy grid that will be fed trough the LiDAR branch of the network
to help the generator understanding the scene physical constraints like walls. The last picture is the first person view
sharing the same focal parameters of the real robot’s camera. This image will be utilized to extract the visual information
and learn the scene characteristics. The first person view will also help the network to understand the parts to be
hallucinated. The expected result is shown in the second picture, where the top view is reproduced. Furthermore, I
also export a traversability map (third picture), to account for future improvements of the learning process. The most
difficult part is to make the first three representation consistent with each other. Every map should perfectly align with
the others in order to ease the learning process. To do so, it is necessary to account for the robot position at each time
step and center the map with the origin coincident to its position. Once all of the above problems have been solved it is
possible to collect the final dataset and start the training process.

8.3 Training the Network

The following work will focus on the trainign process. Once the dataset will be recorded it will be fed as input to the
network to start the learning process. It is expected that a lot of work will be necessary to improve network’s results
tuning the hyper parameters like the number of convolutional layers or the kernel sizes. Furthermore, another possible
modification is to exploit a wider field of view, and possibly a full 360 degree visualization instead of the first person
view. The aforementioned work will be done during the third month of my stay as a conclusion to the project.

9 Conclusions

The work done at Stanford’s Vision and Learning Laboratory, under the supervision of Prof. Silvio Savarese, allowed
me to acquire some knowledge in machine learning to enrich my aerospace background with state of the art techniques
that will be adopted extensively in space applications. For the results obtained, I was proposed to extend my stay in the
laboratory to keep working on the aforementioned problem. The proposal represents for me a great honor and I’m very
grateful for the opportunity that ASI and CAIF have given me.

23

G. AUTELITANO - JANUARY 8, 2020

Contents

1 Introduction 1

2 Introduction to Artificial Intelligence 2

3 Autonomous Vehicles Forecast 2

4 Machine Learning in Space Application 3

4.1 NASA’s AstroBee . 3

5 Machine Learning Basics 4

5.1 Artificial Neuron . 4

5.2 Neural Networks . 5

5.3 Loss Function . 6

5.4 Stochastic Gradient Descent and Back Propagation . 7

6 Advanced Algorithms 10

6.1 Generative Adversarial Networks . 10

6.2 Recurrent Neural Networks . 11

6.3 Convolutional Neural Networks . 13

6.3.1 Transposed Convolution . 14

7 Path Prediction 14

7.1 Baseline: S-GAN . 14

7.2 SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints 15

8 Trajectory forecasting using on-board sensors 15

8.1 TopNet: a birds-eye view generative network . 16

8.2 Gibson Environment Dataset . 22

8.3 Training the Network . 23

9 Conclusions 23

24

G. AUTELITANO - JANUARY 8, 2020

References

[1] Michael A. Nielsen. Neural networks and deep learning. Determination Press, 2015.
[2] Chris Olah and Shan Carter. Attention and augmented recurrent neural networks. Distill, 2016.
[3] Amir Sadeghian, Ferdinand Legros, Maxime Voisin, Ricky Vesel, Alexandre Alahi, and Silvio Savarese. Car-net:

Clairvoyant attentive recurrent network. 2017.
[4] Vineet Kosaraju, Amir Sadeghian, Roberto Martín-Martín, Ian Reid, S. Hamid Rezatofighi, and Silvio Savarese.

Social-bigat: Multimodal trajectory forecasting using bicycle-gan and graph attention networks, 2019.
[5] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi. Social gan: Socially acceptable

trajectories with generative adversarial networks. 2018.
[6] Stefano Pellegrini, Andreas Ess, and Luc Van Gool. Improving data association by joint modeling of pedestrian

trajectories and groupings. pages 452–465, 09 2010.
[7] Laura Leal-Taixé, Michele Fenzi, Alina Kuznetsova, Bodo Rosenhahn, and Silvio Savarese. Learning an image-

based motion context for multiple people tracking. 06 2014.
[8] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki Hirose, S. Hamid Rezatofighi, and Silvio Savarese.

Sophie: An attentive gan for predicting paths compliant to social and physical constraints. 2018.
[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. In

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 779–788, June 2016.
[10] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,

Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[11] Fei Xia, Amir R. Zamir, Zhi-Yang He, Alexander Sax, Jitendra Malik, and Silvio Savarese. Gibson env: real-world
perception for embodied agents. In Computer Vision and Pattern Recognition (CVPR), 2018 IEEE Conference on.
IEEE, 2018.

25

	Introduction
	Introduction to Artificial Intelligence
	Autonomous Vehicles Forecast
	Machine Learning in Space Application
	NASA's AstroBee

	Machine Learning Basics
	Artificial Neuron
	Neural Networks
	Loss Function
	Stochastic Gradient Descent and Back Propagation

	Advanced Algorithms
	Generative Adversarial Networks
	Recurrent Neural Networks
	Convolutional Neural Networks
	Transposed Convolution

	Path Prediction
	Baseline: S-GAN
	SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints

	Trajectory forecasting using on-board sensors
	TopNet: a birds-eye view generative network
	Gibson Environment Dataset
	Training the Network

	Conclusions

