

Why addressing pedestrian trajectory forecasting

Autonomous vehicles to become the major means of transport by 2050

•

•

•

• •

•

•

Video: Pedestrian are not easily predictable

http://www.youtube.com/watch_popup?v=VIDEOID/watch?v=Fdf2sJtPIJY

Automation Levels

Pedestrian recognition is one of the key features for AVs next leap

Space Applications: Astrobee

Astrobee will help astronauts reduce time they spend on routine duties,

leaving them to focus more on the things that only humans can do.

“It can fly autonomously

throughout most of the US

section of the ISS interior. […]

Each Astrobee carries a suite

of six cameras (including

LIDAR sensors and a 21 MP

RGB camera)”

Machine Learning vs Traditional Coding

“Machine Learning is a field of study that gives computers the ability to

learn without being explicitly programmed.”
Arthur Samuel, 1959

Computer

Data

Code

Output

Computer

Data

Output

Code

Traditional Coding Machine Learning

Machine Learning vs Traditional Coding

“Machine Learning is a field of study that gives computers the ability to

learn without being explicitly programmed.”
Arthur Samuel, 1959

Computer

Data

Code

Output

Computer

Data

Output

Code

Traditional Coding Machine Learning

o

•

•

•

•

•

o

•

•

•

•

Perceptron: ML Elementary Unit

A perceptron is the simplest neural network: a computational model of a

single neuron

𝑧

𝑥1
𝑥2
𝑥3
𝑥4

𝑥𝑛

𝑤1

𝑤𝑛

𝑏

𝑓 𝑧 𝑎 𝑧 =෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖 + 𝑏

Perceptron: ML Elementary Unit

A perceptron is the simplest neural network: a computational model of a

single neuron

𝑥1
𝑥2
𝑥3
𝑥4

𝑥𝑛

𝑤1

𝑤𝑛

𝑏

𝑓 𝑧 𝑎 𝑧 =෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖 + 𝑏

Activation Functions

The activation function allows to have control over the weighted sum.

𝑧

𝑎

𝑧

𝑎

𝑎 = 𝜎 𝑧 =
1

1 + 𝑒−𝑧
𝑎 = 𝑅𝑒𝐿𝑢 𝑧 = max(0, 𝑧)

Artificial Neural Networks

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

Perceptrons are fully connected to create a network with hidden layers.

Weights and biases are initialized randomly

𝑎1
𝐿

𝑎2
𝐿

ℎ1 ℎ2

• 𝑎𝑗
𝑙 = 𝑓 σ𝑘𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙

• 𝒂𝑙 = 𝒇 𝑾𝑙𝒂𝑙−1 + 𝒃𝑙

Error Function

The loss function tracks network’s performance and it is used to compute

gradients for the learning process.

𝑎1
𝐿

𝑎2
𝐿

𝒂𝐿(𝒙)

𝒚(𝒙)

𝑦1 𝑦2

𝐶 𝑾,𝒃
𝐶 𝑾, 𝒃 =

1

2𝑛
෍

𝒙

𝒚 𝒙 − 𝒂𝐿 𝒙
2

ℎ1

ℎ2

Gradient Descent

• 𝒉 = 𝑾,𝒃 ∈ ℝ𝑚

• ΔC ≈
𝜕𝐶

𝜕ℎ1
𝑑ℎ1 +⋯

𝜕𝐶

𝜕ℎ𝑚
𝑑ℎ𝑚

• ΔC ≈ ∇𝐶 ⋅ Δ𝒉

We aim at training the network to minimize the cost function tuning the

weight and biases.

• Δ𝒉 = −𝜂∇𝐶 ⟹ ΔC
• 𝒉′ = 𝒉 + Δ𝒉 = 𝒉 − 𝜂∇𝐶

Setting the learning rate 𝜼 to high would result in excessive overshooting

Backpropagation

We use stochastic gradient descent to minimize a cost function. To update

weights and biases (learning process) we rely on backpropagation:

• 𝜹𝐿 = ∇𝑎𝐶 ⊙ 𝜎′ 𝒛𝐿

• 𝜹𝑙 = 𝑤𝑙+1 𝑇
𝛿𝑙+1 ⊙𝜎′ 𝒛𝑙

•
𝜕𝐶

𝜕𝑏𝑗
𝑙 = 𝛿𝑗

𝑙

•
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 𝑎𝑘

𝑙 𝛿𝑗
𝑙

• 𝒉′ = 𝒉 + Δ𝒉 = 𝒉 − 𝜂∇𝐶

• 𝑤𝑘
′ = 𝑤 − 𝜂

𝜕𝐶

𝜕𝑤𝑘

• 𝑏𝑘
′ = 𝑏 − 𝜂

𝜕𝐶

𝜕𝑏𝑘
𝑎𝑘
𝑙 𝛿𝑗

𝑙

Convolutional Neural Networks

CNNs are the standard in image processing for artificial intelligence. The

output of CNNs layers generalizes the most common patterns highlighting

key aspects

𝑥𝑗𝑘

𝑐𝑗𝑘

× 4
3 × 3 (𝑙 × 𝑚)

𝑐𝑗𝑘 = 𝜎 ෍

𝑙

෍

𝑚

𝑤𝑙,𝑚𝑥𝑗+𝑙,𝑘+𝑚 + 𝑏

Convolutional Neural Networks

CNNs are the standard in image processing for artificial intelligence. The

output of CNNs layers generalizes the most common patterns highlighting

key aspects

𝑎𝑗𝑘 = 𝜎 ෍

𝑙

෍

𝑚

𝑤𝑙,𝑚𝑎𝑗+𝑙,𝑘+𝑚 + 𝑏

𝑥𝑗𝑘

𝑐𝑗𝑘

Convolutional Neural Networks

CNNs are the standard in image processing for artificial intelligence. The

output of CNNs layers generalizes the most common patterns highlighting

key aspects

𝑎𝑗𝑘 = 𝜎 ෍

𝑙

෍

𝑚

𝑤𝑙,𝑚𝑎𝑗+𝑙,𝑘+𝑚 + 𝑏

𝑥𝑗𝑘

𝑐𝑗𝑘

Convolutional Neural Networks

CNNs are the standard in image processing for artificial intelligence. The

output of CNNs layers generalizes the most common patterns highlighting

key aspects

𝑎𝑗𝑘 = 𝜎 ෍

𝑙

෍

𝑚

𝑤𝑙,𝑚𝑎𝑗+𝑙,𝑘+𝑚 + 𝑏

𝑥𝑗𝑘

𝑐𝑗𝑘

Convolutional Neural Networks

CNNs are the standard in image processing for artificial intelligence. The

output of CNNs layers generalizes the most common patterns highlighting

key aspects

𝑎𝑗𝑘 = 𝜎 ෍

𝑙

෍

𝑚

𝑤𝑙,𝑚𝑎𝑗+𝑙,𝑘+𝑚 + 𝑏

𝑥𝑗𝑘

𝑐𝑗𝑘

Convolutional Neural Networks

CNNs are the standard in image processing for artificial intelligence. The

output of CNNs layers generalizes the most common patterns highlighting

key aspects

𝑎𝑗𝑘 = 𝜎 ෍

𝑙

෍

𝑚

𝑤𝑙,𝑚𝑎𝑗+𝑙,𝑘+𝑚 + 𝑏

𝑥𝑗𝑘

𝑐𝑗𝑘

Convolutional Neural Networks

CNNs are the standard in image processing for artificial intelligence. The

output of CNNs layers generalizes the most common patterns highlighting

key aspects

𝑎𝑗𝑘 = 𝜎 ෍

𝑙

෍

𝑚

𝑤𝑙,𝑚𝑎𝑗+𝑙,𝑘+𝑚 + 𝑏

𝑥𝑗𝑘

𝑐𝑗𝑘

Convolutional Neural Networks

CNNs are the standard in image processing for artificial intelligence. The

output of CNNs layers generalizes the most common patterns highlighting

key aspects

𝑎𝑗𝑘 = 𝜎 ෍

𝑙

෍

𝑚

𝑤𝑙,𝑚𝑎𝑗+𝑙,𝑘+𝑚 + 𝑏

𝑥𝑗𝑘

𝑐𝑗𝑘

Convolutional Neural Networks

CNNs are the standard in image processing for artificial intelligence. The

output of CNNs layers generalizes the most common patterns highlighting

key aspects

Generative Antagonist Networks

𝑥1 𝑥𝑛

𝑧𝑛

𝒛

𝑧2

𝑧1

𝑦1 𝑦𝑛

The network is trained until the discriminator cannot distinguish real data

from fake data.

Generative Antagonist Networks: Architecture

𝑥1 𝑥𝑛

𝑧𝑛

𝒛

𝑧2

𝑧1

𝑦1 𝑦𝑛

The network is trained until the discriminator cannot distinguish real data

from fake data.

Generative Antagonist Networks: Problem Space

Giving some colors to a child hoping he will draw Caravaggio’s “I Bari”

fooling an art critic

GAN Results seem promising

A first experiment shows remarkable results after only 5 training epochs

Code Example: Generator
class Generator(nn.Module):

def __init__(self, ngpu):

self.main = nn.Sequential(

nn.ConvTranspose2d(in_channels = nz, out_channels = ngf * 8, kernel_size = 4,
stride = 1, padding = 0, bias=False),

nn.BatchNorm2d(num_features = ngf * 8),

nn.ReLU(True),

nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),

nn.BatchNorm2d(ngf * 4),

nn.ReLU(True),

nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),

nn.BatchNorm2d(ngf * 2),

nn.ReLU(True),

nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),

nn.BatchNorm2d(ngf),

nn.ReLU(True),

nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),

nn.Tanh()

Code Example: Discriminator
class Discriminator(nn.Module):

def __init__(self, ngpu):

self.main = nn.Sequential(

nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),

nn.LeakyReLU(0.2, inplace=True),

nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),

nn.BatchNorm2d(ndf * 2),

nn.LeakyReLU(0.2, inplace=True),

nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),

nn.BatchNorm2d(ndf * 4),

nn.LeakyReLU(0.2, inplace=True),

nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),

nn.BatchNorm2d(ndf * 8),

nn.LeakyReLU(0.2, inplace=True),

nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),

nn.Sigmoid()

𝑥𝑡−1

Long-Short Term Memory (LSTM) Networks

Humans don’t start their thinking from scratch every second. Recurrent

Neural Networks (RNN) take account of history to understand the context

𝜎 tanh𝜎 𝜎

tanh

ℎ𝑡−1

𝜎 tanh𝜎 𝜎

tanh

ℎ𝑡

ℎ𝑡+1

𝐶𝑡+1

𝜎 tanh𝜎 𝜎

tanh

ℎ𝑡+1

𝐶𝑡−1

𝑥𝑡 𝑥𝑡+1

Long-Short Term Memory (LSTM) Networks

𝐶𝑡−1

ℎ𝑡−1 ℎ𝑡

𝐶𝑡

𝑓𝑡

𝜎 tanh𝜎

𝑖𝑡

𝜎

tanh

𝑜𝑡

ℎ𝑡

ҧ𝐶𝑡

We analyze a single block of an LSTM network

• 𝑥𝑡 = Input Vector
• 𝐶𝑡 = Context Vector

• 𝑓𝑡 = 𝜎 𝑊𝑓 ⋅ 𝑥𝑡, ℎ𝑡−1 + 𝑏𝑓
• 𝑖𝑡 = 𝜎 𝑊𝑖 ⋅ 𝑥𝑡, ℎ𝑡−1 + 𝑏𝑖
• ҧ𝐶𝑡 = tanh 𝑊𝐶 ⋅ 𝑥𝑡, ℎ𝑡−1 + 𝑏𝐶
• 𝑜𝑡 = 𝜎 𝑊𝑖 ⋅ 𝑥𝑡, ℎ𝑡−1 + 𝑏𝑖

• 𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ ҧ𝐶𝑡
• ℎ𝑡 = 𝑜𝑡 ∙ tanh(𝐶𝑡)𝑥𝑡

SoPhie: Top-View Approach

SoPhie algorithm considers both physical and social constraints using as

input the top view scene and coordinates of each pedestrian

Pre-trained

CNN

D
a
ta

s
e

t

Agents state

𝑋𝑖
1:𝑡 = 𝑥𝑖 , 𝑦𝑖

LSTM

Encoder

…

Attention Module GAN Module

Physical Att

Social Att

Physical Att

Social Att

1st Agent

N-th Agent

C
o
n
c
a
te

n
a
ti
o
n

G
e
n
e
ra

to
r

P
re

d
ic

te
d
 A

g
e
n
ts

 S
ta

te

z

D
is

c
ri
m

in
a
to

r

Feature Extraction Module

𝐼𝑡

JRDB Converter

GitHub:

https://github.com/GiulioAutel/jrdb_converter

SoPhie: Extension to first-person view

Utilizing onboard sensors to forecast pedestrian interaction is crucial for

social navigation. Primary sensors are RGB cameras and LiDAR.

J
R

D
B

C
o
n

v
e

rt
e

r

Agents state

𝑋𝑖
1:𝑡 = 𝑥𝑖 , 𝑦𝑖,

LSTM

Encoder

…

Attention Module GAN Module

Physical Att

Social Att

Physical Att

Social Att

1st Agent

N-th Agent

C
o
n
c
a
te

n
a
ti
o
n

G
e
n
e
ra

to
r

P
re

d
ic

te
d
 A

g
e
n
ts

 S
ta

te

Noise z

D
is

c
ri
m

in
a
to

r

Feature Extraction Module

𝐼𝑡 , 𝐿𝑡

Head orientation (e.g. Detectron2)

Θ𝑖
1:𝑡

Future work

JRDB Dataset

The dataset is composed of both indoor and outdoor scenarios.

Interactions between pedestrians span from trivial to highly unpredictable

Birdseye View Transformation

Using LiDAR point-cloud it is possible to infer the birds-eye view scene.

In this manner occlusion problems are highly mitigated.

𝑥

𝑦

𝑥

𝑦

Cafeteria: people ordering and eating Hall: students leaving class

Pedestrian Tracking

Applying a transformation to labels position it is possible to track

pedestrian movements and thus feeding the input to the neural network.

GitHub:

https://github.com/GiulioAutel/jrdb_converter

S-GAN: Baseline Evaluation

As a first step I trained the network with a cleaner and richer dataset

coming from the JRDB Converter

Pre-trained

CNN

J
R

D
B

D
a
ta

s
e

t

Agents state

𝑋𝑖
1:𝑡 = 𝑥𝑖 , 𝑦𝑖

LSTM

Encoder

…

Attention Module GAN Module

Physical Att

Social Att

Physical Att

Social Att

1st Agent

N-th Agent

C
o
n
c
a
te

n
a
ti
o
n

G
e
n
e
ra

to
r

P
re

d
ic

te
d
 A

g
e
n
ts

 S
ta

te

z

D
is

c
ri
m

in
a
to

r

Feature Extraction Module

𝐼𝑡

Baseline: Social-GAN Preliminary Results on JRDB

Top View Net Architecture

Top View Net

The network’s input will be the RGB video stream and the LiDAR

pointcloud projected on a 2D plane.

RGB Camera Video Stream LiDAR projected pointcloud

Input Data Loader

To generate the input and shuffle the dataset, a data-loader has been

coded. All the inputs are tensors storing pixel intensity values bounded

between [-1, 1] with 255 steps (8-bit). The images are also cropped.

Autoencoder Test

To test the network architecture the encoder-decoder module has been

trained as an autoencoder to obtain a visual proof as a sanity check

Autoencoder Results on FPV

The autoencoder module can extract the most relevant features and

reconstruct a final image based on the latter information. The overall

result is satisfactory as a sanity check.

Autoencoder Results on LiDAR Top View (2D-Conv)

The autoencoder module is not capable of extracting the most relevant

features and reconstruct a final image based on LiDAR information. The

2D convolution layers have not proven to be the correct solution.

Autoencoder Results on LiDAR Top View (1D-Conv)

The 2D input image tensor (𝑛 × 𝑛) has been reshaped to obtain a single

column vector of sizes: 𝑛2 × 1. A subsequent 1D-Conv series of layers

have been utilized to extract the most relevant features.

Occupancy Grid Map

The basic concept behind an occupancy grid map is the representation of

three different domains: free space, solid boundaries and unknown space.

• 𝑟𝑖(𝑡) = (𝑥𝑖 , 𝑦𝑦 , 𝑧𝑖)

• 𝑃𝑡 = 𝑟𝑖(𝑡) 𝑖=1
𝑛

• 𝑛 = Number of LiDAR rays

• ഥ𝑟𝑖 < 𝑟𝑖
• ഥ𝑟𝑖 = 𝑟𝑖
• ഥ𝑟𝑖 > 𝑟𝑖

Occupancy Grid Map

The basic concept behind an occupancy grid map is the representation of

three different domains: the free space, the solid boundaries and the

unknown space.

Occupancy Map Examples

Other examples of occupancy maps relative to different environments. For

each map it is mandatory to identify a “zone of interest”.

Gibson Environment Dataset: Proof of Concept

The final step before the training process is the creation of a dataset to

obtain the ground-truth for the loss function evaluation. A Gibson

Environment has been modified to output the desired results.

Final Training

