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Why addressing pedestrian trajectory forecasting

Autonomous vehicles to become the major means of transport by 2050

2015 2020

F|rst Stage: 2020

Development of AVs for
consumers.

* New mobility models begin to
emerge.

» Car OEMs begin to assess
strategicimpact

2050

Second Stage: 2030 | Third Stage: 2050

» Consumers begin to adopt AVs

* AVs become the primary means
of transport

* AVs free up to 50 mins/day

» Vehicles crashes fall by 90%,
saving billions of dollars

McKinsey & Company, 2015
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Video: Pedestrian are not easily predictable
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http://www.youtube.com/watch_popup?v=VIDEOID/watch?v=Fdf2sJtPIJY

Automation Levels

Pedestrian recognition is one of the key features for AVs next leap

High
Automation

An automated driving system
performs all aspects of the
dynamic driving task in certain
driving modes even if the human
driver will do not respond
appropriately to a request to
intervene

Partial
Automation

The driver assistance system
undertakes both of steering and
acceleration/braking operations,
with the expectation that the
human driver performs all
remaining aspects of the dynamic
driving task

Full
Automation

No need for a driver. The vehicle is
fully capable of handle every
situation.

Conditional
Automation

An automated driving system
performs all aspects of the dynamic
driving task in certain driving
modes

Driver Assistance

The driver assistance system
executes steering OR acceleration
and braking operations, by using
information about the driving
environment. The human driver
performs all remaining aspects of
the dynamic driving task. The
vehicle is fully under the driver’s
control.

B The car has the main role
The driver has the main role Stanford University




Space Applications: Astrobee

Astrobee will help astronauts reduce time they spend on routine duties,
leaving them to focus more on the things that only humans can do.

Battery

Speaker/Microphone Terminate Button

NavCam

Nozzle
SpeedCam

Laser Pointer A

HazCam

Touch Screen oo

Power Switch PerchCam

DockCam

Forward Flashlight Aft Flashlight

Wake Button

Signal Lights

Impeller Corner Bumpers

Status LEDs

‘It can fly autonomously
throughout most of the US
section of the ISS interior. [...]
Each Astrobee carries a suite
of six cameras (including
LIDAR sensors and a 21 MP

RGB camera)”
NASA: Astrobee Science Guide
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Machine Learning vs Traditional Coding

“Machine Learning is a field of study that gives computers the ability to

learn without being explicitly programmed.”
Arthur Samuel, 1959

Traditional Coding Machine Learning
Data > “ Data
Computer Computer
Code > < Output@
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Artificial Intelligence
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Perceptron: ML Elementary Unit

A perceptron is the simplest neural network: a computational model of a
single neuron

n
zZ = XWL'XL' +b
i=1
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Perceptron: ML Elementary Unit

A perceptron is the simplest neural network: a computational model of a
single neuron

n
a z=2wixi+b
i=1
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Activation Functions

The activation function allows to have control over the weighted sum.

1
1+e?

a= o(z)= a = ReLu(z) = max(0, 2)

1
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Artificial Neural Networks

Perceptrons are fully connected to create a network with hidden layers.
Weights and biases are initialized randomly
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Error Function

The loss function tracks network’s performance and it is used to compute
gradients for the learning process.

Ground truth y(x)

() ()
v

Loss L2 Loss 1 ’
: : C(W,b) = — E ly(x) — at(x)||
"G

Function cC(W,b)

Last layer output a’(x)
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Gradient Descent

We aim at training the network to minimize the cost function tuning the
weight and biases.

« h={W,b} e R™
ac

ac
 AC= a_hldhl + - Edhm

« AC=VC(C-Ah

« Ah=-nVC = AC
« W =h+Ah=h-1VC

Setting the learning rate n to high would result in excessive overshooting
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Backpropagation

We use stochastic gradient descent to minimize a cost function. To update
weights and biases (learning process) we rely on backpropagation:

Gradients calculation via BP Network parameters update
« =V, COa'(2)  h'=h+Ah=h-nVC
. l — [(Wl+1)T6l+1] @ O"(Zl) o Wl’c =W — naa_vfk
. j}% 5! + bi=b-n5- s
=]
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Convolutional Neural Networks

CNNs are the standard in image processing for artificial intelligence. The
output of CNNSs layers generalizes the most common patterns highlighting
key aspects

HEE y (z zwl,mx,.ﬂ,kmw)
m

l

Feature map cji Convolution with shared weights

Input Image xj;

Input: 4x 4
Kernel: 3 X 3 (I X m)
Stride: 1

Stanford University



Convolutional Neural Networks

CNNs are the standard in image processing for artificial intelligence. The
output of CNNSs layers generalizes the most common patterns highlighting
key aspects
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Convolutional Neural Networks

CNNs are the standard in image processing for artificial intelligence. The
output of CNNSs layers generalizes the most common patterns highlighting
key aspects
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Convolutional Neural Networks

CNNs are the standard in image processing for artificial intelligence. The
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Convolutional Neural Networks

CNNs are the standard in image processing for artificial intelligence. The
output of CNNSs layers generalizes the most common patterns highlighting
key aspects
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Convolutional Neural Networks

CNNs are the standard in image processing for artificial intelligence. The
output of CNNSs layers generalizes the most common patterns highlighting
key aspects
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Convolutional Neural Networks

CNNs are the standard in image processing for artificial intelligence. The
output of CNNSs layers generalizes the most common patterns highlighting
key aspects

Convolution Layers

Input Image
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Generative Antagonist Networks

The network is trained until the discriminator cannot distinguish real data
from fake data.
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Generative Antagonist Networks: Architecture

The network is trained until the discriminator cannot distinguish real data
from fake data.
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Generative Antagonist Networks: Problem Space

Giving some colors to a child hoping he will draw Caravaggio’s “| Bari”
fooling an art critic

Michelangelo Merisi, 1594
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GAN Results seem promising

A first experiment shows remarkable results after only 5 training epochs

Generated Ima: ges

Training Epochs
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Code Example: Generator

class
def init (self, ngpu):

self.main = nn.Sequential (
nn.ConvTranspose2d(in_channels = nz, out channels = ngf * &, kernel size = 4,
stride = 1, padding = 0, bias=False),
nn.BatchNorm2d (num features = ngf * ),

nn.ReLU (True),

nn.ConvTranspose2d (ngf * &, ngf * , bias=False
nn.BatchNorm2d (ngf *
nn.ReLU(True),

nn.ConvTranspose2d( ngf * , ngf * , bias=False),
nn.BatchNorm2d (ngf
nn.ReLU (True),

nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d (ngf),
nn.ReLU (True),

nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
nn.Tanh ()
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Code Example: Discriminator

class ( ) :
def init ( ) :

.main = nn.Sequential (

nn.Conv2d(nc, ndf, , bias=ralse),
nn.LeakyReLU ( inplace=True

nn.Conv2d (ndf, ndf * 2, False
nn.BatchNorm2d (ndf * 7)),

nn.LeakyReLU ( , inplace=True),

nn.Conv2d(ndf * 2, ndf * , bias=False),
nn.BatchNorm2d (ndf * ),

nn.LeakyReLU ( , inplace=True),

nn.Conv2d(ndf * 4, ndf * &, , , , bias=False),
nn.BatchNorm2d (ndf * ©),
nn.LeakyReLU ( , inplace=True),

nn.Conv2d (ndf * &, , , , , bias=ralse),
nn.Sigmoid ()
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Long-Short Term Memory (LSTM) Networks

Humans don’t start their thinking from scratch every second. Recurrent
Neural Networks (RNN) take account of history to understand the context

ht—l ht ht+1
C e T\ ( T\ 4 T\
t—1
= > G
— > fei
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Long-Short Term Memory (LSTM) Networks

We analyze a single block of an LSTM network

Xy = Input Vector
- 2 * (; = Context Vector

Ct—l f;(\ f;\ > Ct O ft = O-(Wf : [xt) h’t—l] + bf)
| © = o(W; - [x¢, he—1] + b;)
ft Lt C, 0t U Ct = tanh(W(; : [xt; ht—l] + bC)
ht—l , ht * Ot = O-(WL ’ [xt, ht—l] + bl)
S J

© Ci=f;-Coqg+ip-C

@ * hy = o; - tanh(Cy)
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SoPhie: Top-View Approach

SoPhie algorithm considers both physical and social constraints using as
input the top view scene and coordinates of each pedestrian

Feature Extraction Module Attention Module GAN Module
¢ | 1st Agent
. ! Pre-trained
A : _ S
e | CNN Physical Att | 15 g
B¢ . 2 s
= —»  Social Att 5 _ o §
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JRDB Converter

1 1P.0 1.0 0.4 2.85

2 "labels": { 20.0 3.0 -0.56 1.7

3 "901286.pcd": [ 308.0 5.0 -1.27 1.63
4 408.0 6.0 -0.55 -1.16
5 "label_id": "pedestrian:36", 50.0 7.0 -1.51 -08.7
6 "box": 68.0 8.0 0.98 -1.8

7 "cy": -3.0267, 708.0 9.0 -7.72 1.96
8 "h": 1.69, 80.0 10.0 -7.68 3.4
9 "cz": 0.125, 98.0 12.0 -6.36 0.53
10 10 0.0 14.0 -4.2 0.96
11 110.0 17.0 -7.33 0.12
12 12 0.0 20.0 -4.84 -0.29
13 130.0 21.0 -2.0 0.24
14 1, 140.0 22.0 -0.43 3.42
15 "attributes": { 150.0 23.0 -0.04 -3.11
16 "interpolated": true, 16 0.0 24.0 1.89 1.84
17 "num_points": 159, 17 0.0 25.08 -3.55 -0.08
18 "no_eval": false, 18 0.0 26.0 -1.48 7.88
19 "distance": 4.316147152452636 19 0.0 27.0 -3.17 -1.14
20 1, 200.0 35.0 3.1 1.52

21 "file_id": "e01286.pcd”, 211.0 1.0 0.4 2.85

22 "observation_angle": ©0.7773719591570767 221.0 3.0 -0.56 1.7
23 1. 231.0 5.0 -1.27 1.62
24 { 241.0 6.0 -0.55 -1.16
25 "label_id": "pedestrian:28", 251.0 7.0 -1.51 -8.7
26 "box": { 261.0 8.0 0.98 -1.8
27 "cy": 4.05094, 271.0 9.0 -7.72 1.96
28 "h": 1.8, 281.0 10.0 -7.68 3.4
29 "cz": ©.0834826, 291.0 12.0 -6.37 0.54
30 "rot_z": -8.785595, 301.0 14.0 -4.2 0.95
31 "1": 0.99, 311.0 17.0 -7.33 0.12
32 "w": 0.5, 321.0 20.0 -4.84 -0.29
33 "cx"t -3.82959 331.0 ® -1.99 0.29
34 1, 341.0 22.0 -0.45 3.42
35 "attributes": { 351.0 23.0 -0.84 -3.1
36 "interpolated”: true, 361.0 24.0 1.9 1.85
37 “num_points": 36, 371.0 25.0 -3.55 -0.01
38 "no_eval”: false, 381.0 26.0 -1.48 7.88
39 "distance": 5.574725657290231 391.0 27.0 -3.16 -1.12
40 1, 401.0 35.0 3.1 1.51

41 "file_id": "001286.pcd”, 412.0 1.0 0.4 2.85

42 "observation_angle": -2.328113661066547 422.0 3.0 -0.56 1.69
43 %. 432.0 5.0 -1.27 1.62
44 442.0 6.0 -0.55 -1.16 . . . e .
as "label id": "pedestrian:16”, 452.0 7.0 -1.51 -0.7 GitHub: https://github.com/GiulioAutel/jrdb_converter

.json txt
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https://github.com/GiulioAutel/jrdb_converter

SoPhie: Extension to first-person view

Utilizing onboard sensors to forecast pedestrian interaction is crucial for
social navigation. Primary sensors are RGB cameras and LIDAR.

Feature Extraction Module Attention Module GAN Module
1st Agent
R > Physical Att c @
< < i = 5
E’ Social Att S _ ‘g §
c IS i = ©
O 2 © % c
O It Lt S g N < N g
QDJ N-th Agent © 8 g (%_')’
o (&)
i A Q
-g:> Agents state LSTM Physical Att S
> o1t o > — : E
Xt =(an) Encoder Social Att Noise z
A ?
_| Head orientation (e.g. Detectron2)
g ®i1:t

Future work
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JRDB Dataset

The dataset is composed of both

indoor and outdoor scenarios.
Interactions between pedestrians span from trivial to highly unpredictable

.
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Birdseye View Transformation

Using LIiDAR point-cloud it is possible to infer the birds-eye view scene.
In this manner occlusion problems are highly mitigated.

Cafeteria: people ordering and eating Hall: students leaving class
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Pedestrian Tracking

Applying a transformation to labels position it is possible to track
pedestrian movements and thus feeding the input to the neural network.

GitHub: https://github.com/GiulioAutel/jrdb _converter
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https://github.com/GiulioAutel/jrdb_converter

S-GAN: Baseline Evaluation

As a first step | trained the network with a cleaner and richer dataset
coming from the JRDB Converter

JRDB Dataset

A 4

Agents state
XE = (e yy)

LSTM
Encoder

Attention Module GAN Module
1st Agent
Physical Att _5 %
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Social Att S - %) S
© S c I
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Physical Att 4 3
a
Social Att z
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Baseline: Social-GAN Preliminary Results on JRDB

Model (ADE/FDE [m

JRDB-In JRDB-Out | ETH (Worst) | ZARA2 (Best)

JRDB-In 0.08/0.18 0.08/0.18 0.14/0.28 0.12/0.24
JRDB-Out 0.07/0.15 0.06/0.13 0.14/0.29 0.12/0.24

ETH 1.66/2.85 1.02/1.82 0.72/131 0.52/0.94
ZARA2 0.64/1.28 0.37/0.78 0.32/0.67 0.31/0.64

ADE: Average Displacement Error
FDE: Finale Displacement Error
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Top View Net Architecture

[ FPV Feature Maps Feature Maps
Concatenation

TOP

Semantic Map

FPV

3 channels RGB

v

NND-d¢
De-Conv

Top Feature Maps

TOP

Occupancy Map

NNDJ-d<

Stanford University



Top View Net

The network’s input will be the RGB video stream and the LIDAR
pointcloud projected on a 2D plane.

RGB Camera Video Stream LiDAR projected pointcloud

Stanford University



Input Data Loader

To generate the input and shuffle the dataset, a data-loader has been
coded. All the inputs are tensors storing pixel intensity values bounded
between [-1, 1] with 255 steps (8-bit). The images are also cropped.

Red channel Green channel Blue channel Top view channel

100

200

300
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Autoencoder Test

To test the network architecture the encoder-decoder module has been
trained as an autoencoder to obtain a visual proof as a sanity check

Input o | g Output
» O > O >
Image = \8 Image

Feature Maps
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Autoencoder Results on FPV

The autoencoder module can extract the most relevant features and
reconstruct a final image based on the latter information. The overall
result is satisfactory as a sanity check.
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Autoencoder Results on LIDAR Top View (2D-Conv)

The autoencoder module is not capable of extracting the most relevant
features and reconstruct a final image based on LIiDAR information. The
2D convolution layers have not proven to be the correct solution.

100
200
300 1

400

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
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Autoencoder Results on LIDAR Top View (1D-Conv)

The 2D input image tensor (n X n) has been reshaped to obtain a single

column vector of sizes: n? x 1. A subsequent 1D-Conv series of layers
have been utilized to extract the most relevant features.

0 100 200 300 400 0 100 200 300

400 0 100 200 300 400 Q 100 200

300 400
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Occupancy Grid Map

The basic concept behind an occupancy grid map is the representation of
three different domains: free space, solid boundaries and unknown space.

* (@) = (X Yy, 7))
* Pt — {rl(t)}
. = Number of LiDAR rays

e 1 <1 Free Space (White)
* 1 = ?l Solid Boundary (Black)

—_

1> Unknown Space (Gray
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Occupancy Grid Map

The basic concept behind an occupancy grid map is the representation of
three different domains: the free space, the solid boundaries and the
unknown space.

Occupancy Grid
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Occupancy Map Examples

Other examples of occupancy maps relative to different environments. For
each map it is mandatory to identify a “zone of interest”.

Bytes Cafe

Jordan Hall

5B Fores Cafe

y [m]
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S AV o v B O ®
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Gibson Environment Dataset: Proof of Concept

The final step before the training process is the creation of a dataset to
obtain the ground-truth for the loss function evaluation. A Gibson

Environment has been modified to output the desired results.

Occupancy Grid Top view render
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