

Ferrites analysis for the AC-Dipole magnet

Corrado Comino
Summer Internship Final Presentation
$$
09 \text { / } 25 \text { / } 2019
$$

Mu2e Experiment

The first part of mu2e experiment needs a low noise pulsed proton beam: AC - Dipole magnet is made to satisfy this requirement.

AC-Dipole

AC-Dipole magnet

- AC- Dipole magnet is made by a row of bricks of ferrite (ferromagnetic material)
- Coil: single turn of copper tube
- Periodic magnetic field induced by the current through the tube
- AC-Dipole magnet steers the beam periodically to a
 collimator (a small opening)

AC-Dipole magnet

Cross section

Top view

Magnetic Permeability

The magnetic permeability is the measure of the ability of a material to support the formation of a magnetic field within itself.

$$
\boldsymbol{B}=\mu \boldsymbol{H}
$$

While at low frequencies this is a linear relationship, at high frequencies there is a phase delay between B and H. Writing as a phasors:

$$
\boldsymbol{B}=B_{0} e^{j \omega t} \quad \boldsymbol{H}=H_{0} e^{j(\omega t-\delta)}
$$

The phase displacement is the responsible of losses. The imaginary part of the magnetic permeability takes account of this phenomenon:

$$
\mu=\mu^{\prime}-\mathrm{j} \mu^{\prime \prime}
$$

CMD10

- CMD10: high resistivity and low losses ferrite
- Different batches have different behaviour of ferrites
- Factory data don't fit the measures (fornitors use a small ring to evaluate μ)
- $\mu \propto B, f$

CMD10 has the highest saturation flux density of our nickel-zinc ferrites, along with medium permeability and high resistivity. Its' formulation also exhibits a high Curie temperature, permitting continuous operation at elevated temperatures. It is ideal for broadband RF and transmission line transformers, solid state amplifier power splitters, pulsed power, and kicker magnets operating in or out of vacuum up to $200^{\circ} \mathrm{C}$

Typical Properties
Initial Permeability vs. Temperature

Initial Permeability	625
Maximum Permeability	3000
Saturation Flux Density	4300 Gauss
Remanent Flux Density	2900 Gauss
Coercive Force	0.36 Oersted
Curie Temperature	$250^{\circ} \mathrm{C}$
dc Volume Resistivity	10^{10} ohm-cm
Bulk Density	$5.20 \mathrm{~g} / \mathrm{cc}$

Unless otherwise specified, all tests were performed at $10 \mathrm{KHz}, 22^{\circ} \mathrm{C}$
Bs tested at $1 \mathrm{KHz}, 20$ Oersted $\cdot \mathrm{Br}$, Hc at $1 \mathrm{KHz}, 5$ Oersted

Permeability vs. Flux Density

Complex Permeability vs. Frequency

Ferrites Parameters

Mostly interested in losses

- Low excitation quality factor Q

$$
\mathrm{Q}=\frac{\text { stored energy }}{\text { energy loss }}
$$

- Quality Factor at 1000

Gauss

Work steps

- Measure ferrites
- Model the magnetic permeability μ of bricks
- Define acceptability
boundaries for brick's power loss and magnetic field

Measurement Circuit

- Dipole Mode vs Toroidal Mode
- Toroidal Mode (no gap
 measure) to obtain measures to model
- Dipole Mode to verify the model μ

紧Fermilab

Measurement Circuit

- Capacitors to obtain resonance with ferrites
- Measures taken in resonant condition
- $I_{\text {meas }}$ current inducing the magnetic field
- $\mathrm{V}_{\text {meas }}$ voltage at the ferrite terminals
- $\mathrm{l}_{\text {loss }}$ current producing power loss

Measures

Measures

	Measurement on the 1.2 cm gap ferrite CMD10 e 5005 ,Toroidal Mode, 8 AWG wire, Two Turn. September 5, 2019.					(Vc*Il/2)/loss		
	meas	1/(2*freq)	meas	$\mathrm{Vc} / 2$	meas			
	freq	sec	Vc	OneTurn V	Il	Q	L (H)	
							(2*pi*freq* I	
CMD10	[Hz]		[pk-volts]	[pk-volts]	[pk-amps]	[pk-volts]		
"50V"	$2.532 \mathrm{E}+05$	$1.974 \mathrm{E}-06$	24.2	12.1	0.70100	45.56	$2.166 \mathrm{E}-05$	
"100V"	$2.494 \mathrm{E}+05$	$2.005 \mathrm{E}-06$	49.9	25.0	1.44000	28.86	$2.213 \mathrm{E}-05$	
"200V"	$2.469 \mathrm{E}+05$	$2.025 \mathrm{E}-06$	101.0	50.5	2.80000	20.26	$2.326 \mathrm{E}-05$	
"500V"	$2.533 \mathrm{E}+05$	$1.974 \mathrm{E}-06$	251.0	125.5	5.89000	8.69	$2.679 \mathrm{E}-05$	
"50V"	$2.433 \mathrm{E}+05$	$2.055 \mathrm{E}-06$	25.0	12.5	0.26500	14.35	$6.163 \mathrm{E}-05$	
"100V"	$2.477 \mathrm{E}+05$	$2.019 \mathrm{E}-06$	49.6	24.8	0.48950	9.45	$6.514 \mathrm{E}-05$	
"200V"	$2.537 \mathrm{E}+05$	$1.971 \mathrm{E}-06$	99.0	49.5	0.89500	6.82	$6.942 \mathrm{E}-05$	
"300V"	$2.488 \mathrm{E}+05$	$2.009 \mathrm{E}-06$	152.0	76.0	1.57000	6.41	$6.196 \mathrm{E}-05$	
"500V"	$2.528 \mathrm{E}+05$	$1.978 \mathrm{E}-06$	253.0	126.5	2.37000	4.34	$6.725 \mathrm{E}-05$	
	$\mathrm{Vc} / 1.571$	meas	Vcav* (T/2)/N*area	$\left(\mathrm{Vc}\right.$ * $\mathrm{I}_{\text {- }}$) / 2	Point-to-Point		B-Loop	
	V av	I R meas	delB	Loss	Loss	loss/m* $\mathrm{m}^{\star} \mathrm{m}$	delb	
CMD10	[volts]	[pk amps]	[Gauss pk-pk]	[watts]	[watts]	[watts]	[Gauss_pk-pk]	
"50V"	15.374	0.025	30	0.3	0.18578341	71	30	
"100V"	31.767	0.058	62	1.4	1.24471	477	62	
"200V"	64.299	0.163	128	8.2	6.97767	2,676	128	
"500V"	159.792	0.698	309	87.5	85.10816	32,638	309	
"50V"	15.884	0.023	32	0.3	0.23043	88	32	
"100V"	31.576	0.060	62	1.5	1.28470	493	62	
"200V"	63.025	0.147	122	7.3	6.49149	2,489	122	
"300V"	96.766	0.269	191	20.4	18.61279	7,138	191	
"500V"	161.065	0.583	312	73.7	69.14820	26,518	312	
			Core Par	neters				
		N	core area	Path length	Core volume	Resonant		
		turns	[$\mathrm{n}^{\star} \mathrm{m}$]	[m]	[$\mathrm{m}^{\star} \mathrm{m}$ * m]	Capacitance		
	" 1.2 cm "	2	$5.10 \mathrm{E}-03$		0.00261			

Model μ

- COMSOL Multiphysics
- Design of ferrite bricks
- Simulation of magnetic field within the brick varying current through the coil

带Fermilab

Model μ

- Iterative method: modelling μ^{\prime} and $\mu^{\prime \prime}$ in order to fit measures
- Small measures steps to finely track the magnetic permeability behaviour
- Increasing μ^{\prime}, magnetic flux increases
- Increasing $\mu^{\prime \prime}$, power loss increases

Slowly increasing B
Low excitation
($B_{\max }$ 200G)
μ^{\prime} and $\mu^{\prime \prime}$ until 200G (almost constant)

Refine μ^{\prime} and $\mu^{\prime \prime}$ to
fit the measures

Resulting Model

- The maximum magnetic field measured is 2700G (equal to 0.27 T)
- μ^{\prime} modelled with a linear function of B under $B_{\text {max }}$
- $\mu^{\prime \prime}$ modelled with a quadratic function of B under $B_{\text {max }}$
- These models fit magnetic field and losses measures with less than 10% of error

CMD10_mu2_fun(B) (1)

Using the model

- Fringe Effect evaluation
- Dipole Mode behaviour

Thank you for your attention

Corrado Comino
Summer Internship Final Presentation
$$
09 \text { / } 25 \text { / } 2019
$$

