

Ferrites analysis for the AC-Dipole magnet

Corrado Comino Summer Internship Final Presentation 09 / 25 / 2019

Mu2e Experiment

The first part of mu2e experiment needs a low noise pulsed proton beam: AC – Dipole magnet is made to satisfy this requirement.

AC-Dipole magnet

- AC- Dipole magnet is made by a row of bricks of ferrite (ferromagnetic material)
- Coil: single turn of copper tube
- Periodic magnetic field induced by the current through the tube
- AC-Dipole magnet steers the beam periodically to a collimator (a small opening)

AC-Dipole magnet

‡ Fermilab

Magnetic Permeability

The magnetic permeability is the measure of the ability of a material to support the formation of a magnetic field within itself.

$$\boldsymbol{B}=\boldsymbol{\mu}\boldsymbol{H}$$

While at low frequencies this is a linear relationship, at high frequencies there is a phase delay between *B* and *H*. Writing as a phasors:

$$\boldsymbol{B} = B_0 e^{j\omega t} \qquad \boldsymbol{H} = H_0 e^{j(\omega t - \delta)}$$

The phase displacement is the responsible of losses. The imaginary part of the magnetic permeability takes account of this phenomenon:

$$\mu = \mu' - j\mu''$$

5 Fermilab

5 9/25/2019 Corrado Comino I Summer Internship Final Presentation

Issues

 CMD10: high resistivity and low losses ferrite

- Different batches have different behaviour of ferrites
- Factory data don't fit the measures (fornitors use a small ring to evaluate μ)
- $\square \quad \mu \propto B, f$

CMD10 High Flux Density, High Frequency Ni-Zn Ferrite

CMD10 has the highest saturation flux density of our nickel-zinc ferrites, along with medium permeability and high resistivity. Its' formulation also exhibits a high Curie temperature, permitting continuous operation at elevated temperatures. It is ideal for broadband RF and transmission line transformers, solid state amplifier power splitters, pulsed power, and kicker magnets operating in or out of vacuum up to 200°C.

Typical Properties 625 Initial Permeability Maximum Permeability 3000 Saturation Flux Density 4300 Gauss Remanent Flux Density 2900 Gauss 0.36 Oersted **Coercive Force** 250°C **Curie Temperature** dc Volume Resistivity 10¹⁰ ohm-cm **Bulk Density** 5.20 a/cc

Initial Permeability vs. Temperature

100

100

01

nitial Permeability

Complex Permeability vs. Frequency

BH Loop Parameters vs. Temperature

Temperature, °C

Ferrites Parameters

Low excitation
 permeability μ

Permeability vs. Flux Density

Mostly interested in losses

 Low excitation quality factor Q

$$Q = \frac{stored \; energy}{energy \; loss}$$

Quality Factor at 1000
 Gauss

‡ Fermilab

Work steps

Measure ferrites

Model the magnetic permeability µ of bricks

 Define acceptability boundaries for brick's power loss and magnetic field

Measurement Circuit

- Dipole Mode vs Toroidal Mode
- Toroidal Mode (no gap measure) to obtain measures to model
- Dipole Mode to verify the model μ

Measurement Circuit

- Capacitors to obtain resonance with ferrites
- Measures taken in resonant condition
- I_{meas} current inducing the magnetic field
- V_{meas} voltage at the ferrite terminals
- I_{loss} current producing power loss

Measures

Measures

	Measurement or	the 1.2 cm gap fer	rite CMD10 e 5005,Toroidal Mode	, 8 AWG wire, Two Tu	rn. September 5, 2019.		
	meas	1/(2*freq)	meas	Vc/2	meas	(Vc*I1/2)/loss	
	freq	sec	Vc	OneTurn V	Il	Q	L (H)
						V	/c/(2*pi*freq*Il)
CMD10	[Hz]		[pk-volts]	[pk-volts]	[pk-amps]	[pk-volts]	
"50V"	2.532E+05	1.974E-06	24.2	12.1	0.70100	45.56	2.166E-05
"100V"	2.494E+05	2.005E-06	49.9	25.0	1.44000	28.86	2.213E-05
"200V"	2.469E+05	2.025E-06	101.0	50.5	2.80000	20.26	2.326E-05
"500V"	2.533E+05	1.974E-06	251.0	125.5	5.89000	8.69	2.679E-05
5005	5						
"50V"	2.433E+05	2.055E-06	25.0	12.5	0.26500	14.35	6.163E-05
"100V"	2.477E+05	2.019E-06	49.6	24.8	0.48950	9.45	6.514E-05
"200V"	2.537E+05	1.971E-06	99.0	49.5	0.89500	6.82	6.942E-05
"300V"	2.488E+05	2.009E-06	152.0	76.0	1.57000	6.41	6.196E-05
"500V"	2.528E+05	1.978E-06	253.0	126.5	2.37000	4.34	6.725E-05
	Vc/1.571	meas	Vcav*(T/2)/N*area	(Vc*I_R)/2	Point-to-Point		B-Loop
	V av	I R meas	delB	Loss	Loss	loss/m*m*m	delB
CMD10	[volts]	[pk amps]	[Gauss pk-pk]	[watts]	[watts]	[watts]	[Gauss_pk-pk]
"50V"	15.374	0.025	30	0.3	0.18578341	71	30
"100V"	31.767	0.058	62	1.4	1.24471	477	62
"200V"	64.299	0.163	128	8.2	6.97767	2,676	128
"500V"	159.792	0.698	309	87.5	85.10816	32,638	309
500	-						
5005	15.004	0.022	22	0.3	0.22042		22
50V"	15.884	0.023	32	0.3	1.28470	88	32
"100V"	31.576	0.060	62	1.5	1.28470	493	62
"200V"	63.025	0.147	122	7.3	6.49149	2,489	122
"300V"	96.766	0.269	191	20.4	18.61279	7,138	191
"500V"	161.065	0.583	312	73.7	69.14820	26,518	312
		Core Parameters					
		N	core area	Path length	Core volume	Resonant	
		turns	[m*m]	[m]	[m*m*m]	Capacitance	
	"1 2 cm"	2	5 10F-03		0.00261	-	

Model μ

- COMSOL Multiphysics
- Design of ferrite bricks
- Simulation of magnetic field within the brick varying current through the coil

Model μ

- Iterative method:
 modelling μ' and μ'' in
 order to fit measures
- Small measures steps to finely track the magnetic permeability behaviour
- Increasing µ', magnetic
 flux increases
- Increasing µ", power
 loss increases

Resulting Model

- The maximum magnetic field measured is 2700G (equal to 0.27 T)
- μ' modelled with a linear function of B under B_{max}
- μ'' modelled with a quadratic function of B under B_{max}
- These models fit magnetic
 field and losses measures
 with less than 10% of error

Using the model

Fringe Effect evaluation

Dipole Mode behaviour

16 9/25/2019 Corrado Comino I Summer Internship Final Presentation

Fermilab **ENERGY** Office of Science

Thank you for your attention

Corrado Comino Summer Internship Final Presentation 09 / 25 / 2019