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In the past few years, new high specific heat Nb3Sn
wires have gained much focus at FNAL. Indeed, they have
proved to be more stable against thermal perturbations
with respect to standard wires. Nevertheless, a trade off
exists between their thermal efficiency and production
feasibility. In this report I describe the thermal and
structural models that I have developed by exploiting
ANSYS Mechanical APDL®, which I got acquainted with
at the beginning of my training. The aim has been to
optimize the location of high specific heat elements in order
to obtain an optimal thermal stability, while minimizing
the risk of wire breakage during drawing. FEM results are
compared with experimental ones made beforehand. Other
minimum quench energy (MQE) thermal models have been
developed for expected new experimental results. New data
may improve the understanding of the embedded physical
uncertainties in the model.

I. INTRODUCTION

NB3SN magnets are known to require longer training than
other magnets. In general, the first quench (i.e. transition

from superconducting to normal phase) occurs at 60-70% of
the short sample limits and more than 20 quenches are required
to reach the magnet nominal field [1]. However, higher critical
currents are required to fulfill the needs of higher magnetic
fields, leading to greater instability issues that must be treated
carefully in order to reduce cost and magnet test time during
the training. Indeed, as training quenches are performed a
gradual improvement of the magnet’s performance occurs until
the plateau establishes.

It is known that quenches of Nb3Sn magnets are determined
by thermal perturbations caused by conductor motion (e.g.
due to Lorentz forces), epoxy cracking etc. These thermal
perturbations results in a local thermal heating of the wire
that could eventually make the wire phase change to the
normal state. In an adiabatic model the minimum quench
energy (MQE) is simply defined as the integration of the
conductor’s specific heat over the temperature margin within
the superconducting state. The idea, which dates back to 1960,
is to reduce the MQE by inserting high specific heat (H-Cp)
elements in the wire [2].

In this introduction, focus on Nb3Sn, quenching and Finite-
Element-Method (FEM) is provided. The second and third
sections discuss the thermal and structural 2-D analysis, re-
spectively. They have been realized by means of the commer-
cial FEM program ANSYS Mechanical APDL®. The thermal

analysis is compared with experimental results taken from [1].
On the other hand, the outcomes from the plastic simulation
are discussed considering the geometry of an actual H-Cp wire
that was broken during drawing. Other models waiting for
experimental results and the commented scripts have not been
included in this report, but provided to the supervisors.

A. Nb3Sn and Composite Wires

The energy of a circular collider is limited by the strength
of the bending dipole magnets. This explains why higher-field
accelerator magnets have gained much attention by High En-
ergy Physics (HEP) and Particle Accelerator communities [3].
Even though the highest fields have been obtained exploiting
superconducting electromagnets, the maximum nominal field
of NbTi accelerator magnets is not high enough anymore. At
the moment the Large Hadron Collider (LHC), at the European
Organization for Nuclear Research (CERN, Switzerland), is
limited to ∼ 8 T at 1.9 K.

Fermi National Accelerator Laboratory, which operated one
of the largest SC accelerators in the world, the Tevatron, is
pushing beyond the NbTi LHC magnets by exploring super-
conductors with higher critical parameters. Considering the
present state-of-the-art Nb3Sn wires, a ∼ 50% improvement
of the critical current density (Jc) is also required for 16 T
dipoles [4]. Nb3Sn is an inter metallic type II superconductor
with critical temperature Tc0 = 18.3 K and Bc20 up to 30 T.
For comparison, NbTi has a Tc0 of 9.3 K and Bc20 of 15 T.
Still, the major drawbacks of Nb3Sn are its brittleness due to
the high-temperature processing and its critical current being
strain sensitive, which is to say superconductivity may be lost
because of sufficiently high strain.

To obtain the required current in the cable, several strands
are connected in parallel and twisted or transposed along the
axial direction. The strands in the cable are not insulated
from each other for letting the current redistribute in the case
of localized defects or quenches [3]. Mainly, thin supercon-
ducting filaments are positioned in a normal low resistance
matrix to assure better stability with respect to flux jumps and
further protection in case of quenching. An example of the
150/169 wire cross section is shown in Fig. 1. The number 150
refers to the number of superconducting strands in the wire,
whereas 169 is the maximum value that could be achieved
without the internal Cu hexagon. The main advantages of the
copper matrix are the high thermal conductivity and the high
specific heat. The former enhances heat transportation away
from the filaments, while the latter promotes absorption of a



2

Fig. 1. Cross section of 150/169 Nb3Sn wire of the Restacked Rod Process®

type [5]. The matrix is made of Cu, whereas the 150 hexagonal Nb3Sn sub-
elements contain bronze.

large fraction of heat and it decreases Joule heating as the
superconductor loses its superconductor capability. Induced
eddy currents by time-dependent fields are reduced by twisting
the filaments; this solution also improves stability to flux
jumps.

B. Quench Origins and H-Cp Elements Implementation

The previously mentioned critical current, temperature and
magnetic field define a critical surface within which the su-
perconducting state is sustained, i.e. non measurable resistivity
and perfect diamagnetism. In general a magnet operates below
the critical surface, but as soon as the current is being ramped
up one gets closer to the critical surface. Crossing it means
that a small volume V switches to the normal resistive state.
Power is therefore dissipated by means of Joule effect, leading
to a temperature increase of the surrounding volume dV .
If the temperature reached by dV approaches the critical
temperature, then further power is dissipated and the process
keeps going by means of thermal diffusion. The normal zone
propagates through the entire coil and the magnet quenches.

Two different kinds of quench mechanism are defined:
conductor-limited and energy-deposited quenches [6]. In order
to distinguish them, it is assumed a conductor of known critical
current Ic(T,B). Actually, the maximum magnetic field seen
by the conductor is a function of the current itself B = f(I),
resulting in the following implicit equation for the maximum
current Imax:

I = Ic(T0, f(I)) at T0.

If the quench occurs at Imax then it is due to the intrinsic
properties of the conductor: it is a conductor-limited quench.
The other kind of quench occurs at a current I lower than
Imax(T0), since in a volume of the coil the temperature has
been raised to T0 + ∆T , such that

I ≥ Ic(T0, f(I)) .

These quenches are energy-deposited since they take place
because of an energy deposit.

Hence, in conductor-limited quenches the critical surface
is crossed because of a current increase, whereas in the
energy-deposited quenches the critical surface is crossed
due to a local temperature increase. In the following, I will
consider only the latter since they are the cause of magnet
training. Furthermore, the magnetic field B will be assumed
to be solely the external one fixed by the experimental setup.

As mentioned in the previous page, it is possible to in-
crease the minimum quench energy (MQE) by adding H-Cp
substances. At Fermilab a design compatible with high-Jc
multifilamentary Nb3Sn wires [1] has been formulated. Some
Nb3Sn sub-elements have been substituted by Cu tubes filled
with H-Cp powders. However, they have been mixed with Cu
powder to counteract their low thermal diffusivity that would
otherwise preclude heat diffusion from the outer Cu matrix
into the H-Cp strands. It is known that Gd2O3 has an high
specific heat at low temperatures; e.g. the monoclinic structure
shows a peak at 3.8 K [7]. The optimal position of these H-
Cp in terms of thermal efficiency should be intuitively at the
outermost layer of the Nb3Sn, in order to shield those sub-
elements from external perturbations. Unfortunately, it has not
been possible to realize this structure because of wire breakage
during drawing in the past. Different configurations have been
realized, as discussed in the second section.

C. Thermal Analysis Discretization by Finite Element Method

Since the optimization of a model lies its ground on
the apprehending of both underlying physical and numerical
methods, before tackling the physical aspect it is important to
outline how a FEM works, at least in a linear case.
Starting from the strong formulation, i.e. the PDE to be solved,
we want to derive the associated weak formulation that can be
solved numerically, with the inevitable approximations. We
define the Sobolev spaces Hk(Ω), k ≥ 1, and Hk(Ω) contains
all the functions f(r) such that their partial derivatives of
total order ≤ k are square-integrable in Ω. For k = 0 we
have H0(Ω) = L2(Ω), where L2(Ω) is the vector space of
all square-integrable functions in the domain Ω ⊂ R2. Its
associated norm is defined as:

‖f‖Hk =

 ∑
0≤i+j≤k

∫
Ω

∣∣∣∣∣ ∂i+jf∂xi1∂x
j
2

∣∣∣∣∣
2

dx

1/2

, k ≥ 0 .

Considering the 2-D case with a piece-wise smooth domain
boundary Γ with no cusps, it can be proved that all the
elements of H2(Ω) are continuous functions on Ω (the do-
main including its boundary), while H1(Ω) includes also non
continuous functions [8]. By defining cp(r) the temperature-
independent specif heat capacity per unit volume of conductor
(J m−3), K(r) a second-order tensor whose components are
the thermal conductivity coefficients (W m−1 K−1) and Pr
is the Joule heating rate per unit volume (W m−3) the heat
balance equation follows [6]:

cp(r)
∂T (r, t)

∂t
= ∇ · (K(r)∇T (r, t)) + Pr(r, t) . (1)
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In the following we drop the position dependency for ease of
notation. Moreover, since our model is a 2-D one, the system
is invariant along the axial (z) direction and in the following
the constant units are modified accordingly. As we shall see,
ANSYS sets an unitary thickness in 2-D models. Therefore,
assuming that the enclosed functions are sufficiently smooth,
it is possible to rewrite (1) for the 2-D model in:

cp Ṫ (t) = ∇ · (K∇T (t)) + Pr(t), in Ω, 0 < t ≤ T
T (0) = T0, in Ω,

T (r, t) = Tenv, on Γ, 0 < t ≤ T,
(2)

where the boundary conditions of the starting temperature
T0 and the temperature constraint Tenv of the environment
at the boundary Γ at all times have been set. Both T0 and
Tenv are constants; (2) is the starting strong formulation. In
order to derive the associated weak formulation, we have to
apply Green’s formula for the divergence. Foremost, we have
to define the vector space of our test functions V = H1

Γ(Ω) =
{v(r) ∈ H1(Ω) | v(Γ) = 0}; then the previous equation is
multiplied by v ∈ V and all terms are integrated over the
domain Ω. It results:

∫
Ω

cpṪ (t)v dx−
∫

Ω

∇ · (K∇T (t))v dx =

=

∫
Ω

Pr(t)v dx, ∀v ∈ V, 0 < t ≤ T,

T (0) = T0, in Ω,

T (t) = Tenv, on Γ, 0 < t ≤ T .

Then, we apply the Green’s formula for the divergence. Now
the weak formulation takes the following form: for any given
t, 0 < t ≤ T , find T (t) ∈W = H1(Ω) such that

∫
Ω

cpṪ (t)v dx +

∫
Ω

K∇T (t) · ∇v dx =

=

∫
Ω

Pr(t)v dx, ∀v ∈ V, 0 < t ≤ T

T (0) = T0, in Ω,

T (t) = Tenv, on Γ, 0 < t ≤ T .

The latter can be rewritten in a more concise form as:
(
Ṫ (t), v

)
+ a (T (t), v) = (Pr(t), v) , ∀v ∈ V,

T (0) = T0, in Ω,

T (t) = Tenv, on Γ, 0 < t ≤ T .

(3)

where the inner product is the integral of the product of two
functions over Ω and the bi-linear form

a (T (t), v) =

∫
Ω

K∇T (t) · ∇v dx

has been defined. For each 0 < t ≤ T the previous weak
formulation has a unique solution T (t) ∈ H1(Ω).

In order to apply the FEM, in the following it is assumed
that the domain Ω has a polygonal boundary. In this case, it is
possible to define a discretization {Km}, where Km denotes
a generic element of the mesh. For simplicity we consider a
triangular mesh with interior nodes xi being labeled from 1 to

Fig. 2. 2D piece-wise linear FEM basis functions. At a boundary node (left)
and at internal node (right) [9].

Nh, while the boundary nodes go from Nh + 1 to Nt. Then it
is chosen Vh = span{ϕj , j = 1 : Nh} ⊂W where ϕj(xi) =
δij are the chosen basis functions, as depicted for example
in Fig. 2. Analogously, Wh = span{ϕj , j = 1 : Nt} ⊂ V
and T (t) is substituted by Th(t). At this point ∀vh ∈ Vh
is equivalent to ∀ϕi, i = 1 : Nh, because of linearity. The
problem in the new (spatial) discretization is to find Tt(t) ∈
Wh such that:
(
Ṫh(t), ϕi

)
+ a(Th(t), ϕi) = (Pr(t), ϕi), i = 1 : Nh

Th(0) = T0, ∀xj with j = 1 : Nt,

Th(xj , t) = Tenv, j = Nh+1 : Nt, 0 < t ≤ T .

From the hypothesis Th(t) ∈Wh, it is set:

Th(t)(r) =

Nt∑
j=1

cj(t)ϕj(r), 0 ≤ t ≤ T

Recalling the property of the basis ϕi(xj) = δij , by applying
the boundary condition at t = 0 and t > 0, we obtain,
respectively:

cj(0) = T0, ∀xj with j = 1 : Nt, (4)
cj(t) = Tenv, ∀xj with j = Nh+1 : Nt, 0 < t ≤ T . (5)

Therefore, for t > 0, the coefficients {cj(t), j = 1 : Nh} are
the solutions of the following system of ODEs:

Nh∑
j=1

ċj(t)

∫
Ω

ϕjϕidx︸ ︷︷ ︸
mij

+

Nh∑
j=1

cj(t) a (ϕj , ϕi)︸ ︷︷ ︸
aij

=

=

∫
Ω

Pr(t)ϕidx−
Nt∑

j=Nh+1

Tenv a (ϕj , ϕi)︸ ︷︷ ︸
di

, i = 1 : Nh

cj(0) = T0, j = 1 : Nt.
(6)

Therefore, the system can be written as{
Mċ(t) + Ac(t) = d(t)
c(0) = u0

(7)
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Fig. 3. Hypertech geometries of (left) normal wire and (right) High-Cp wires,
both having 0.7 mm diameter.

where both M (the mass matrix) and A are highly sparse. The
first order linear ODE system is a semi-discretization since
only space and not time has been discretized. The latter can
be discretized by common numerical methods. It is important
to emphasize that this FEM has been applied to a linear
heat transfer equation. The ANSYS model, being the material
properties dependent on temperature, is strictly non-linear and
iterative algorithms are required to obtain a solution with
the required accuracy. The interested reader may find more
information in [10].

II. THERMAL ANALYSIS

In the following, two different kinds of wires have been
simulated. The firsts have been produced by Hypertech and
the others by Bruker. The former High-Cp version contained
Gd2O3 sub-elements in the innermost row and at the six
corners of a 0.7 mm diameter wire. Its experimental results
served to test the validity of the relative model. On the
contrary, the High-Cp Bruker wire contained the high capacity
components in the outermost row and its drawing process
failed at the diameter of about 4 mm. The Bruker geometry has
been chosen to understand how the position and the number
of Gd2O3 sub-elements affected the wire efficiency against
thermal perturbation. At the moment no experimental results
are available for the Bruker wires. The chosen element type
has been PLANE55 and the mesh was sufficiently refined until
no changes occurred in the second decimal digit of the wires
maximum temperatures after the heat pulse.

A. Hypertech Wires

The 61-restack Hypertech wires described in [1] have been
modeled in 2-D as depicted in Fig. 3. The normal wire is
surrounded by the stycast which acts as a thermal insulator,
whereas the Nb3Sn sub-elements are embedded in a copper
matrix. The Nb3Sn hexagons contain bronze due to the fabri-
cation process and six-corners of Nb3Sn have been replaced
by copper. On the other hand, the High-Cp contains seven
Gd2O3 sub-elements at the center and at the six corners. The
wire is not at the center of the stycast to better represent the
experimental setup, therefore half the model has been realized
because of symmetry with respect to the ŷ direction. Our
reference system is assumed to be centered at the wire center,

Fig. 4. measured specific heat of Gd2O3. X. Xu, A. V. Zlobin, E. Barzi –
Fermilab; C. Buehler, M. Field, B. Sailer, M. Wanior, H. Miao – Bruker EST;
C. Tarantini – Florida State University. “Enhancing specific heat of Nb3Sn
conductors to improve stability and reduce training“. Presented at CEC-ICMC
2019.

with the axes parallel to the ones depicted in the previous
figure. Regarding the geometrical lengths:

• wire diameter 0.7 mm;
• bronze rods radius 15 µm;
• sub-elements width 2 · 29/

√
3 µm;

• thickness between two sub-elements 10 µm;
• stycast, total width Wsty and height Hsty are 1.3 mm

and 1.0 mm, respectively. It has been displaced along y
by (Hsty −Rwire)/8;

• Gd2O3 sub-elements radius 23 µm (only in High-Cp
wire).

The chosen material properties as a function of temperature
are fully described in Appendix A. The effect of the applied
magnetic field, B = 12 T, is considered only in the copper
thermal conductivity and Gd2O3 specific heat. All the Gd2O3
properties have been mixed with the copper ones to consider
the powder mixture, as described in the introduction. The
standard linear rule of mixture has been chosen, with Cu :
Gd2O3= 1 : 2. It is interesting to notice in Fig. 4 that the
peaked behaviour of [7] specific heat is lost as magnetic fields
are applied. Nonetheless, the specif heat of Gd2O3 remains
sufficiently high as experimental results have shown.

The next step has been the choice of the thermal load to
simulate a MQE experiment. In [1] a flat strain gage has
been applied on top of the wire and the energy has been
obtained by integrating over time the dissipated power due
to Joule heating effect in the gage. Being the FEM model
a 2-D one, a thermal flux impinging on a circumference arc
has been chosen, corresponding to θ ∈ [90◦, 120]◦. Being
half the model, this means that the heat flux has been applied
to 30◦ · 2/360◦ = 1/6 of the wire circumference in the
full model. It will be shown that the choice of θ changes
the results by small percentages. As boundary condition,
the initial temperature is set to be T0 = 4.2 K because of
the helium bath, whereas at the boundaries Tenv = 4.2 K is
kept fixed. Along x = 0 no boundary conditions have been
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applied, resulting in an adiabatic setting for ANSYS. The
latter is required to model half the model, since no heat flux
occurs along that line because of the problem symmetry.

The heat flux pulse period has been set to 200 µs and its
amplitude has been evaluated by dividing the input energy by
two, the pulse period and the area. The factor of two derives
from modelling half the wire, whereas the area is just the arc
length upon which the flux is applied multiplied by an unitary
width, that is the thickness dimension used by ANSYS in 2-
D models [10]. At this point we are interested in obtaining
the MQE as a function of the normalized transport current
I/Ic. While in the experimental setup the current is the input
and the MQE is measured, in this FEM model their roles
are exchanged. However, in the FEM simulation no currents
are available, just the maximum temperature of the wire is.
The idea has been to consider the maximum temperature, at
given input energy, as the critical temperature associated to
the required critical current. Therefore the following empirical
relationship for Nb3Sn has been used [12]:

Ic(B, T ) =
C(ε)√
B

[
1− B

Bc2(T, ε)

]2
[

1−
(
T

Tc0

)2
]2

,

(8)
where

C(ε) =
IREF (ε)

√
12 T[

1− 12 T
Bc2(4.2 K,ε)

]2 [
1−

(
4.2 K
Tc0(ε)

)2
]2 , (9)

and

Bc2(T, ε)

Bc20(ε)
=

[
1−

(
T

Tc0(ε)

)2
]
×

×

{
1− 0.31

(
T

Tc0(ε)

)2 [
1− 1.77 ln

(
T

Tc0(ε)

)]}
(10)

The already fitted parameters Iref = 489 A, Tc0 = 16.96 K
and Bc20 = 27.89 T have been chosen, considering null strain
ε = 0. Therefore, the critical current Ic0 = Ic(12 T, 4.2 K)
has been obtained and considering the maximum temperature
of the wire as Tc, the current ratio ĨTc

= Ic(12 T, Tc)/Ic0
has been evaluated for each heat flux pulse. As an order of
magnitude for Nb3Sn at 12 T, critical temperatures of 6.3 K
and 4.4 K correspond to critical current ratios of 0.2 and 0.8,
respectively.

The simulation results are presented in Fig. 5 and they
are compared with experimental ones. It can be appreciated
that the ratio of the MQE is almost three times in both the
simulation and the experimental data. Therefore, the thermal
model has well reproduced the thermal efficiency of the high
specific heat wires. Nonetheless, the curves are lower then
the acquired data. Even though (8) is an approximated fitting
expression, the major difference is given by how the heat
has been applied by the strain gage. Indeed, heat conduction
occurs in all direction in the experiment, whereas in the
simulation the heat flux has been directed towards the wire
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Fig. 5. Hypertech wire, comparison between MQE simulations and experi-
ment [1].

itself. Therefore, the required heat required in the simulation to
reach a certain temperature is lower than the experimental one.
Moreover, if one were interested in an absolute model rather
than relative, also the minimum propagation zone (MPZ)
should be considered. Indeed, an energy deposited quench
occurs only if the local increase in temperature occurs beyond
a given volume V0 inside the wire. A 1-D treatment of the
problem can be found in [13]. From a qualitative point of view,
since the strain gage was ∼ 4 mm long while in the ANSYS
model unitary thickness is assumed, the required heat in the
laboratory would be higher considering the MPZ effect.

In order to study the sensitivity of the model with respect
to the chosen material properties, the FEM has been tested
several times, changing the specific heat or thermal conduc-
tivity of one material separately. Each material property has
been changed by ±20%, whose value has been selected in
order to obtain appreciable differences in some plots. The
results are summarized in Tab. I, II. In the tables, ”Dev.’
stands for ’Deviation’ and in the same row are indicated how
ĨTc,αi=±20% changes from ĨTc , where αi = ±20% represents
the material property changed by ±20% at all temperatures. It
resulted that for each material changes, the minimum deviation
(in absolute value) from the original simulation occurs at the
lowest MQE and vice versa for the largest. It is interesting to
note that Nb3Sn specific heat has the greatest impact on the
normal wire final temperature, whereas the high-Cp is strongly
dependent on the Gd2O3 specific heat.

Last, it resulted that the previously defined thermal load θ
changes ĨTc

by about 5% at most, as described in Tab. III.
From the latter it can be noticed that smaller angles result in
lower current ratio values. This behaviour has been explained
by considering the heating more localized for small angles,
resulting in lower dissipation towards the stycast and slightly
higher increase in the wire temperature.
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TABLE I
MATERIAL SENSITIVITY NORMAL WIRE FOR THERMAL SIMULATION.

Thermal conductivity Min. Dev. [%] MQE Min. Dev. [µJ] Max. Dev. [%] MQE Max. Dev. [mJ]

Stycast: ∆κ = −20% -1.4 3.2·102 -3.5 2.3·103

Stycast: ∆κ = 20% 1.2 3.2·102 3.3 2.3·103

Cu: ∆κ = −20% -0.15 3.2·102 -0.63 2.3·103

Cu: ∆κ = 20% 0.11 3.2·102 0.46 2.3·103

Nb3Sn: ∆κ = −20% -0.060 3.2·102 -0.27 2.3·103

Nb3Sn: ∆κ = 20% 0.050 3.2·102 0.21 2.3·103

Bronze: ∆κ = −20% <0.01 3.2·102 <0.01 2.3·103

Bronze: ∆κ = 20% <0.01 3.2·102 <0.01 2.3·103

Specific heat Min. Dev. [%] MQE Min. Dev. [µJ] Max. Dev. [%] MQE Max. Dev. [mJ]

Stycast: ∆cp = −20% -1.1 3.2·102 -3.0 2.3·103

Stycast: ∆cp = 20% 0.97 3.2·102 2.8 2.3·103

Cu: ∆cp = −20% -1.7 3.2·102 -4.9 2.3·103

Cu: ∆cp = 20% 1.6 3.2·102 4.8 2.3·103

Nb3Sn: ∆cp = −20% -3.7 3.2·102 -9.7 2.3·103

Nb3Sn: ∆cp = 20% 3.3 3.2·102 9.3 2.3·103

Bronze: ∆cp = −20% -0.32 3.2·102 -0.76 2.3·103

Bronze: ∆cp = 20% 0.32 3.2·102 0.76 2.3·103

TABLE II
MATERIAL SENSITIVITY HIGH-Cp WIRE FOR THERMAL SIMULATION.

Thermal conductivity Min. Dev. [%] MQE Min. Dev. [µJ] Max. Dev. [%] MQE Max. Dev. [mJ]

Stycast: ∆κ = −20% -0.54 8.6·102 -2.0 5.2·103

Stycast: ∆κ = 20% 0.50 8.6·102 1.9 5.2·103

Cu: ∆κ = −20% -0.42 8.6·102 -1.5 5.2·103

Cu: ∆κ = 20% 0.31 8.6·102 1.1 5.2·103

Nb3Sn: ∆κ = −20% -0.18 8.6·102 -0.62 5.2·103

Nb3Sn: ∆κ = 20% 0.14 8.6·102 0.50 5.2·103

Bronze: ∆κ = −20% <0.01 8.6·102 -0.010 2.3·103

Bronze: ∆κ = 20% <0.01 8.6·102 0.010 5.2·103

Gd2O3: ∆κ = −20% -0.020 8.6·102 -0.050 5.2·103

Gd2O3: ∆κ = 20% 0.010 8.6·102 0.050 5.2·103

Specific heat Min. Dev. [%] I/Ic Min. Dev. [µJ] Max. Dev. [%] I/Ic Max. Dev. [mJ]

Stycast: ∆cp = −20% -0.45 8.6·102 -1.8 5.2·103

Stycast: ∆cp = 20% 0.41 8.6·102 1.7 5.2·103

Cu: ∆cp = −20% -0.73 8.6·102 -3.1 5.2·103

Cu: ∆cp = 20% 0.72 8.6·102 3.1 5.2·103

Nb3Sn: ∆cp = −20% -1.4 8.6·102 -5.5 5.2·103

Nb3Sn: ∆cp = 20% 1.3 8.6·102 5.3 5.2·103

Bronze: ∆cp = −20% -0.12 8.6·102 -0.41 5.2·103

Bronze: ∆cp = 20% 0.12 8.6·102 0.42 5.2·103

Gd2O3: ∆cp = −20% -5.6 8.6·102 -13 5.2·103

Gd2O3: ∆cp = 20% 4.8 8.6·102 14 5.2·103

B. Bruker Wires
In the following the Bruker wire has been modeled, as

depicted in Fig. 6. The wire drawing failed at approximately

4 mm diameter, almost one order of magnitude larger than the
aimed 0.7 mm final diameter. Therefore, the structure with the
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TABLE III
LOAD ANGLE SENSITIVITY FOR THERMAL SIMULATION. THE ANGLE REFERS TO THE FEM MODEL, THUS θ ∈ [0, 180]◦ . THE ORIGINAL ANGLE IN

SIMULATIONS IS 30◦ .

Normal wire Min. Dev. [%] MQE Min. Dev. [µJ] Max. Dev. [%] MQE Max. Dev. [mJ]

∆θ = −20◦ -0.45 3.2·102 -2.0 2.3·103

∆θ = −10◦ -0.14 3.2·102 -0.64 2.3·103

∆θ = 10◦ 0.14 3.2·102 0.58 2.3·103

∆θ = 20◦ 0.26 3.2·102 1.1 2.3·103

High cp wire Min. Dev. [%] MQE Min. Dev. [µJ] Max. Dev. [%] MQE Max. Dev. [mJ]

∆θ = −20◦ -1.3 8.6·102 -4.6 5.2·103

∆θ = −10◦ -0.49 8.6·102 -1.8 5.2·103

∆θ = 10◦ 0.37 8.6·102 1.4 5.2·103

∆θ = 20◦ 0.68 8.6·102 2.5 5.2·103

Fig. 6. Bruker geometry of High-Cp wire, diameter 1.91 cm.

Gd2O3 components in the outermost row has not been realized
yet. The reason for trying this pattern is that structures with
Gd2O3 at the external row should shield the inner wire more
efficiently against thermal perturbations. The aim has been to
verify this hypothesis. Differently from the previous geometry,
the high-Cp sub-elements in the model have the same area as
the bronze rods. In addition to the previous high specific heat
wire with 24 sub-elements (full model) of Gd2O3 in Fig. 6, six
FEM models have been simulated:

• normal wire;
• 6 high-Cp sub-elements in the innermost row;
• 6 high-Cp sub-elements at the six corners of the external

hexagon;
• 24 high-Cp sub-elements in the first two innermost rows

and six corners;
• 18 high-Cp sub-elements in the first two innermost rows;
• 20 high-Cp sub-elements randomly positioned.

The MQE simulations are presented in Fig. 7. It is important
to outline that two pairs of curves having the same number
of Gd2O3:Cu sub-elements mixture overlap each other. The
first overlapping is due to the total number of 6, whereas
the other occurs in the 24 case. Therefore FEM simulations
have shown that the number of these components has a
much greater impact then their location. Actually, the curves

having the Gd2O3 components far from wire center are slightly
more efficient. Nonetheless, the mechanical feasibility of high
specific heat wires has seemed to decrease as these brittle
high-specific heat components are inserted further away from
the wire center. Thus, the simulations have shown that it
is possible develop new structures without worrying about
thermal efficiency as long as the number of high-Cp sub-
elements remains sufficiently high.

III. STRUCTURAL ANALYSIS

In parallel with the thermal simulations, structural models
have been realized by using element type PLANE-182. Since
the Bruker wire broke during the drawing process at about
4 mm diameter, new structural models have been been de-
veloped to predict the drawing failure. Regarding the load, an
inward radial displacement of the wire has been chosen. Radial
displacement has been selected instead of applying a pressure
load on the wire because of in-homogeneous wire shrinking in
the second case. The in-homogeneity was due to the internal
hexagonal disposition of the sub-elements. Since the wire has
been correctly drawed to 1.91 cm diameter, assuming simply
zero strain in the given structure, the radial displacement
decreased the diameter length to 1.81 cm, about 5%. Higher
values led to stress and strain contour plots with no appreciable
differences between different materials in the wire and they
were discarded.

The FEM structural geometry is shown with the correspond-
ing results in Fig. 8. The material properties are listed in A.
Since the drawing process is before the annealing process,
the ’normal’ sub-elements are made of niobium with tin in
the central rods, as Nb3Sn and bronze are obtained after the
thermal treatment. The FEM simulation clearly shows that the
gadolinium mixture with copper has higher stress when it is
positioned in the outermost layer. The same occurs for the
copper surrounding these structures, even though the colour
scale is not sufficiently sensible to appreciate the differences
in the copper stress at the center of the wire. Unfortunately
the color scale could not be made more precise because
of the software setting and the difference in the two cases
are not sufficient to tell whether the wire may break or
not. Several contour plots of stress, strain and plastic work
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Fig. 7. Thermal simulation of Bruker geometry with different high specific heat sub-elements location and number.

have been realized for nine structural models. In some cases
higher stress results in the normal wire configuration. Hence,
further analyses are required and they have not been performed
because of not sufficient time.

IV. CONCLUSION

Several 2-D FEM thermal models have been developed in
order to study the MQE of Nb3Sn superconducting wires. The
developed relative model has been verified with the experimen-
tal results performed on the Hypertech wires [1]. Afterwards,
it has been discovered that the position of the high-specif
heat sub-elements has a negligible contribution regarding the
thermal efficiency of the wire. Being their number most im-
portant against thermal perturbation, the constrain of thermal
efficiency is relaxed because of a greater freedom in new
structures development. This result increases the mechanical
feasibility of these high-specific heat wires. New experimental
data are expected from the normal Bruker wire. Regarding the
structural model, further analyses are required to find the right
criteria that would predict the wire drawing failure.

APPENDIX A
MATERIAL PROPERTIES

A. Thermal properties

In Tab. IV are listed the material properties for the thermal
analyses; the Nb3Sn ones refers to the superconducting state.
The values have been evaluated by several fitting expressions:

• Nb3Sn: thermal conductivity [15] (at 15 T not 12 T
because not present), specific heat [14];

• Cu: thermal conductivity and specific heat from [14],
linear fit for the former;

• Bronze: Sn [wt %] =5.46 [16]; the specific heat has been
fitted linearly.

• Stycast: thermal conductivity [17] (linear fit) and specific
heat [18];

• Gd2O3: thermal conductivity [19], specific heat from
Fig. 4.

B. Structural properties

The mechanical properties are summarized in Tab. V.
The values of the elastic modulus have been taken from
https://www.engineeringtoolbox.com/, except the Gd2O3 from
https://www.azom.com/. Different sources have been used for
the real stress vs strain curves:

• Nb, [20];
• Cu, from https://www.copper.org (oxygen free copper);
• Sn, [21];
• Gd2O3, [22].
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