JET ENERGY CORRECTIONS

Stefano Collovati

Final presentation

September 26, 2012

EXPERIMENTAL ENVIRONMENT

- Proton-antiproton collisions at $\sqrt{s} = 1.96$ TeV
- \blacksquare Delivered \sim 9 inverse fb for data analysis

WHAT IS A JET?

- Narrow cone of particles produced by the hadronization of a quark or gluon
- Jets are observed as clustered energy
- Reconstruct the jet in order to measure the energy of the parent quark or gluon

JET ENERGY CORRECTIONS

- Correct the measured jet energy in order to estimate the "true" energy
- Jet energy corrections are divided into different levels to accommodate different effects:
 - response of the calorimeter to different particles, un-instrumented regions of the detector, multiple interactions, underlying events, energy radiated outside the jet, ...
- To calibrate the corrections we need a clean signal with known energy

PREVIOUS WORK

Find the jet energy corrections k1, k2 that best approximate the W mass:

$$\chi^{2}(k_{1},k_{2}) = \frac{(E_{j1}-k_{1}E_{j1})^{2}}{\Delta E_{j1}^{2}} + \frac{(E_{j2}-k_{1}E_{j2})^{2}}{\Delta E_{j2}^{2}} + \frac{(M(k_{1},k_{2})-M_{W})^{2}}{\sigma_{jj}^{2}}$$

PREVIOUS RESULT

Fit the correction with a continuous function of Et: $[0] \cdot e^{[1] \cdot Et} + [2]$

UPGRADE OF THIS WORK

- Use the full data set (8.7/fb)
- Same purity of the previous sample (ttbar/data \sim 90%)
- Less restrictive cuts
- \implies More events in our sample

Improvement: subtract the W+jets background ($\sim 10\%$)

T-TBAR SAMPLE

Invariant mass of the 2 untagged jets:

b-tagging using BNess tagger

Jets are corrected at Level 5 (absolute energy scale corrections)

χ^2 MINIMIZATION

Fit the correction with a continuous function: $[0] \cdot e^{[1] \cdot Et} + [2]$

 \Rightarrow Parameter values close to the previous ones

APPLICATION TO DIBOSON PRODUCTION

- Use this correction to improve the searches for diboson production
- Signals: WZ and ZZ production with semileptonic decays

DIBOSON PRODUCTION

Diboson searches share the same final states with the low mass Higgs analyses:

Cuts:

- number of jets=2
- *ETL*5_{*jet*1} > 25 Gev
- *ETL*5_{*jet*2} > 25 Gev
- missing ETL5 > 20 Gev

Using these corrections we hope to see an improvement in the signal-to-noise ratio

CORRECTION PROCEDURE

Given the energy correction function:

- correct Et
- correct Pt
- calculate E from Et corrected
- calculate Pz from Pt corrected
- make the invariant mass of the two jets

SIGNAL(WZ+ZZ) W B-QRK

Signal to noise ratio: 6.95

SIGNAL(WZ+ZZ) W B-QRK CORR

Signal to noise ratio: 5.79

NEXT STEPS

- Subtract the W+jets background
- Re-derive the energy correction function

