

GENIE SIMULATIONS WITH NOvA

Giuseppe Ferone

09/24/12

Denis Perevalov, FNAL

NovA: Overview

Long baseline neutrino oscillation experiment:

- Near and far detector pair
- Energy peak of the neutrino flux at 2 GeV
- 810 km baseline from Fermilab to Ash River, Minnesota

Goals:

- Measure $\nu_{\mu} \rightarrow \nu_{e}$ oscillations.
- Precision measurements of $\left|\Delta m\right|_{13}^{2}$, θ_{23} .
 - determine mass hierarchy.
 - constrain CP violating phase.

NovA Far Detector

Large 14+ kton optimized to distinguish electrons:

- Highly segmented (alternating X/Y)
- 65% Active Volume
- Low Z materials (PVC and Scintillator)
- Provide radiation lenght of 40 cm

NovA Monte Carlo simulations

Usage of GENIE software for simulations

GENIE neutrino event generator:

- C++
- ROOT based
- Full adaptation of NEUGEN event generator used by MINOS

We need to know if GENIE predictions work in NOvA detector

Overview

GENIE Validation:

- Use our NOvA far detector
- Place a known neutrino flux
- Observe event rates
- Calculate cross sections
- Compare the obtained value of cross section with GENIE's ones. (neutrino events passing the square)/(bin y

Overview

GENIE Validation:

- Use our NOvA far detector
- Place a known neutrino flux
- Observe event rates
- Calculate cross sections
- Compare the obtained value of cross section with GENIE's ones.

$$\sigma = \frac{(event rate inside the detector)}{flux * (number of targets \in the detector)}$$

MC Simulations with Far Detector geometry

- Used NovA far detector geometry
- Used the simple flux

Cross-Section Comparison to Data

CCQE Cross -Section

Result: the cross section is 30-40% lower of what GENIE claims

MC Simulations with Far Detector geometry

Simplified far detector geometry: 1 block of one material (Carbon)

Neutrino Cross Section calculation

Cross Section comparison to data

CCQE Cross Section

Neutrino Cross Section calculation

Cross Section comparison to data

CC Cross Section

Conclusion: this effect is not due to far detector geometry

Further simplification

A simpler detector geometry still makes GENIE to calculate a lower Cross section

Usage of a flux indipendent by the beam simulations

New simple flux window area=100m²

11

Neutrino Fluxes simulations

 $F = \frac{(neutrino\ events\ passing\ the\ square})/(bin\ width)}{(square\ area})*POT$

Neutrino Cross Section calculation

Cross Section comparison to data

CCQE Cross Section

Neutrino Cross Section calculation

Cross Section comparison to data

CC Cross Section

Cross Section Ratio CCQE

Calculated cross section (flat flux) Calculated cross section (standard flux)

Cross Section Ratio CC

Calculated cross section (flat flux)

Calculated cross section(standard flux)

GenieValidation Ratio CC

Problem finding

The results show a costant factor of 1.5 between the two cross sections

Looked at one of the simple flux files

vtxy:vtxx

Area from the flux file $\sim 360 \text{ m}^2$

Area used in the flux file= $244m^2$

Conclusions

- We performed GENIE validation by calculating cross sections from observed event rates and neutrino fluxes.
- We used simplified detector geometry and simplified flux. The resulting cross section are very close to GENIE Splines.
- We found the problem with previous cross section calculation. It was due to using wrong area for flux window.
- All our code is contained in GenieValidation package. The simplified geometry is contained in file giuseppe_fardet.gdml in Geometry package.

Backup slides

Cross section subtraction

Genie Validation - Génie prediction CC

ν_{e} Appearence

• NovA measures the probability of v_{e} appearance in a v_{μ} beam:

$$\begin{split} \mathsf{P}(\overleftarrow{\nu_{\mu}}) &\approx \sin^{2}2\theta_{13} \sin^{2}\theta_{23} \frac{\sin^{2}(A-1)\Delta}{(A-1)^{2}} \\ & (\stackrel{+}{-}) 2\alpha \sin\theta_{13} \sin\delta_{\mathsf{CP}} \sin2\theta_{12} \sin2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{(A-1)} \sin\Delta \\ &+ 2\alpha \sin\theta_{13} \cos\delta_{\mathsf{CP}} \sin2\theta_{12} \sin2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{(A-1)} \cos\Delta \\ & \alpha = \Delta m_{13}^{2} (\Delta m_{31}^{2}) \qquad \Delta = \Delta m_{31}^{2} L/(4E) \qquad A = \stackrel{(-)}{+} G_{\mathrm{fn}_{e}} L/(\sqrt{2}\Delta) \end{split}$$

- $sin2(2\theta_{13})$ has been measured which allows us to make measurements of δ_{CP} and mass hierarchy.
- Note that we can improve θ_{23} measurement from vµ disappearence.
- Probability is enhanced or suppressed due to matter effects which depend on the mass hierarchy. 21

$\nu_{e}^{}$ Appearence

Probability of oscillations for both v_{μ} and \bar{v}_{μ} as a function of δ for normal and inverted mass hierarchy

