Υ and J/Ψ production in $p\bar{p}$ collisions

Giulia Gonella

Summer Internship at Fermilab National Accelerator Laboratory - CDF experiment

September 26, 2012

Giulia Gonella (Summer Internship @ Fnal - CDF) Υ and J/Ψ production in $p\bar{p}$ collisions

(日) (四) (三) (三)

 Υ and J/Ψ are reconstructed using their $\mu^+~\mu^-$ decay modes.

 $\Upsilon o \mu^+ \mu^ J/\Psi o \mu^+ \mu^-$

Why is this measure important?

- Test of theoretical models of direct bottomonium and charmonium production
- Investigation on $b\bar{b}$ bound state production mechanisms in $p\bar{p}$ collisions.

< ロト < 回 ト < 三 ト < 三</p>

- Solenoidal magnetic spectrometer surrounded by 4π calorimeters and muon detectors.
- 5000-ton assembly of subdetectors
- $\sim 16m$ in lenght by $\sim 12m$ in diameter.
- Approximately cylindrically symmetric layout both in the azimutal plane and in the forward-backward directions → cylindrical coordinate system

イロト イポト イヨト イヨト

CDF detector

Collider Detector at Fermilab

- Silicon detector
 - Layer 00 (L00)
 - Silicon Vertex Detector
 - Intermediate Silicon Layers (ISL)
- Central Outer Tracker (COT)
- Muon chambers
 - Central Muon Detector (CMU)
 - Central Muon Upgrade (CMP)

イロト イヨト イヨト イ

- Central Muon Extension (CMX)
- Intermediate Muon System (IMU)
- Calorimeters

Muons

How to identify muons

Muons traverse CDF detector and leave hits in the outer muon chambers.

Physics objects: tracks.

Reconstruction: adding track segments *(stubs)* to a track formed with hits in the muon drift chamber.

Muon candidate \rightarrow corresponding momentum measured in the tracker.

Muon chambers

- Single wire, rectangular drift chambers with azimuthal segmentation
- coupled with scintillator counters which provide timing information
- 50:50 admisture of argon and ethane
- sense wires parallel to the beam axis operating in proportional regime
- 250 μm hit position resolution in the (r, ϕ) view.

イロト イポト イヨト イヨト

 Charge preamplified, shaped, discriminated and digitized

Detector crossing rate: 2.53 MHz (396 ns clock cycle).

Level 1

Hardware Takes information from calorimeters, COT, CMU, CMX, CMP chambers. Makes "primitives" and combines them with muon stubs. \rightarrow 30 KHz

イロト イポト イヨト イヨト

Giulia Gonella (Summer Internship @ Fnal - CDF)

Level 2

Boards and CPU. New information from SVXII is combined with primitives from Level 1. Resolution similar to off-line one. \rightarrow 800 Hz.

イロト イヨト イヨト イヨト

Level 3

Digitized output from Level 2 accepted events arrives fragmented via optical fibers.

The ordered fragments are assembled in block of data and are ready for the analysis of Level 3 software. \rightarrow 100 Hz

イロト イポト イヨト イヨト

Links across different levels are established by defining trigger paths.

Trigger paths

It identifies a unique combination of a L1, a L2 and a L3 trigger. Data sets are then finally formed by merging the data samples collected via different trigger paths.

Some trigger paths have output rates that exceed the maximum allowed value \rightarrow prescaled by a factor N:one event out of N is accepted.

Static prescale:prescale factor is fixed.

Dynamic prescale:prescale factor is varied during the data taking to exploit at the most the available bandwith.

イロト 不得下 イヨト イヨ

The measure

The $\Upsilon \to \mu^+ \ \mu^-$ cross section is calculated by

...

$$\frac{dN}{dt} = \sigma L_{ist} \to \sigma = \frac{\frac{dN}{dt}}{L_{ist}}$$

PROBLEM: the Yield/ pb^{-1} decreases with time.

Giulia Gonella (Summer Internship @ Fnal - CDF)

 Υ and J/Ψ production in $p\bar{p}$ collisions

September 26, 2012 10 / 18

3

590

< ロト < 回 > < 回 > < 回 >

Idea: luminosity increasing is the problem

Tevatron has been developed during the years of running: if L_{ist} increases with time, events become less clear and not easy to identify.

Plots of Yield/ pb^{-1} at fixed luminosity ranges should have had a constant trend \rightarrow time false variable.

There is residual dependence on time: Yield $/pb^{-1}$ still decreases.

Possible solutions

Idea: the trigger system is the problem

One trigger muon of high p_t 1 CMUP muon: $p_t > 8 GeV/c$ (at L1/L2/L3) 1 L3 muon: $p_t > 1.5 GeV/c$ (at L3 - no L1/L2 requests)

Only one muon is affected by the trigger selection : the influence of the trigger selection decreases and also the time-dependence.

Giulia Gonella (Summer Internship @ Fnal - CDF)

An interesting comparison: J/Ψ

A similar analysis has been performed for the J/Ψ data sample.

Giulia Gonella (Summer Internship @ Fnal - CDF)

Decreasing of Yield/ pb^{-1} was unexpected.

Different data samples L_{ist} dependence analysis:

- Upsilon high p_t
- J/Ψ high p_t
- soft J/Ψ

The problem is still open!

< ロト < 回 > < 回 > < 回 >

Luminosity ranges

500

Luminosity ranges

Upsilon High p_t samples

