Introduction
FEM modeling
Stainless steel core technology
Keystoning analysis
Conclusions and further developments

0000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
<



TECHNICAL DIVISION Superconducting Materials Department

# Mechanical Analyses of Nb3Sn Rutherford-type cables

#### Supervisor

Emanuela Barzi

Summer intern

Federico Bucciarelli

A (1) > (1) > (1)



| <b>C</b>             |                     |                                 |                             |                                      |
|----------------------|---------------------|---------------------------------|-----------------------------|--------------------------------------|
| Introduction<br>0000 | FEM modeling<br>000 | Stainless steel core technology | Keystoning analysis<br>0000 | Conclusions and further developments |

#### Contents

- 1 Introduction
  - Background
- 2 FEM modeling
  - Sensitivity analysis to width compaction
  - Results
- 3 Stainless steel core technology
  - SS core modeling
  - Results
- 4 Keystoning analysis
  - Turk-head analysis
  - Spring-back step
  - Turk-head modeling
- **5** Conclusions and further developments



| Racko                | round        |                                         |                             |                                      |
|----------------------|--------------|-----------------------------------------|-----------------------------|--------------------------------------|
| Introduction<br>●000 | FEM modeling | Stainless steel core technology<br>0000 | Keystoning analysis<br>0000 | Conclusions and further developments |

#### Superconducting Nb<sub>3</sub>Sn strands

- high performance superconducting cables
- composite structure

Б

high plastic deformation during manufacturing



э

★ 3 → < 3</p>

| •000   | 000   | 0000 | 0000 |  |
|--------|-------|------|------|--|
| Backgi | round |      |      |  |

#### Superconducting Nb<sub>3</sub>Sn strands

- high performance superconducting cables
- composite structure
- high plastic deformation during manufacturing

#### Previous work in the field

Elasto-plastic FEM Analysis based on the hypothesys of:

- 2-D geometry
- plane strain
- bi-linear isotropic material



Introduction FEM m o●00 000

g Stainless steel core 0000 Keystoning analysi

Conclusions and further developments

#### Detailed and approximated model

### Detailed model





æ

イロト イヨト イヨト

Introduction FEM modeling Stain

ainless steel core technolog

Keystoning analysis

Conclusions and further developments

#### Detailed and approximated model

#### Detailed model





Federico Bucciarelli Mechanical Analyses of Nb<sub>3</sub>Sn Rutherford-type cables

Introduction oo FEM modeling Stainless steel core technology Keystoning analysis Conclusions and further developments ooo

#### Previous analysis characteristics

#### For the detailed model:

- good description of the mechanical behaviour of a single strand
- higher number of elements
- higher computational cost



э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

#### For the detailed model:

- good description of the mechanical behaviour of a single strand
- higher number of elements
- higher computational cost

#### For the macro-model:

- good description of the mechanical behaviour of the whole cable
- Iow number of elements
- Iower computational cost



Introduction oco FEM modeling Stainless steel core technology oco Strategy used in the previous analysis

Displacements of the first two strands taken from the the macromodel...





Introduction oco FEM modeling Stainless steel core technology oco Strategy used in the previous analysis

Displacements of the first two strands taken from the the macromodel...



...and inserted as loads in the detailed first two strands model.



Introduction oco FEM modeling Stainless steel core technology oco Strategy used in the previous analysis

Displacements of the first two strands taken from the the macromodel...



...and inserted as loads in the detailed first two strands model.









#### Objective

**Sensitivity analysis** of the plastic strain to the **width compaction** of the cable



A (1) < A (1) </p>

| New F                | EM mod       | lel                                     |                             |                                      |
|----------------------|--------------|-----------------------------------------|-----------------------------|--------------------------------------|
| Introduction<br>0000 | FEM modeling | Stainless steel core technology<br>0000 | Keystoning analysis<br>0000 | Conclusions and further developments |

#### Improvements

- mesh quality
- code reliability
- easier convergence



æ

< ∃ →

| New E        | EM mod       |                                 |                     |                                      |
|--------------|--------------|---------------------------------|---------------------|--------------------------------------|
|              |              |                                 |                     |                                      |
| Introduction | FEM modeling | Stainless steel core technology | Keystoning analysis | Conclusions and further developments |

#### Improvements

- mesh quality
- code reliability
- easier convergence

#### More realistic loading

The vertical and horizontal loads are applied **together**.



э

| 0000  | 000    | OOOO | 0000 | Conclusions and further developments |
|-------|--------|------|------|--------------------------------------|
| New F | EM mod | e    |      |                                      |

#### Improvements

- mesh quality
- code reliability
- easier convergence

#### More realistic loading

The vertical and horizontal loads are applied **together**.

#### Parametric code

Only **one script** for different geometries



э

Introduction FEM modeling Stainless steel core technology Keystoning analysis Conclusions and further developments 0000

#### Improvements

- mesh quality
- code reliability
- easier convergence

#### More realistic loading

The vertical and horizontal loads are applied **together**.

#### Parametric code

Only **one script** for different geometries





э

▲ 御 ▶ ▲ 王

Introduction ooo FEM modeling Stainless steel core technology Keystoning analysis Conclusions and further developments ooo

### New FEM model

#### Improvements

- mesh quality
- code reliability
- easier convergence

#### More realistic loading

The vertical and horizontal loads are applied **together**.

#### Parametric code

Only **one script** for different geometries





▲ 同 ▶ ▲ 三



| Introduction<br>0000 | FEM modeling<br>●00 | Stainless steel core technology | Keystoning analysis<br>0000 | Conclusions and further developments |
|----------------------|---------------------|---------------------------------|-----------------------------|--------------------------------------|
| Sensiti              | vity anal           | ysis                            |                             |                                      |

#### Input parameters

width compaction

$$w_c = \frac{l_f}{l_i} = \frac{l_i - \Delta l}{l_i}$$

heigth compaction

$$h_c = rac{h_f}{h_i} = rac{h_i - \Delta h}{h_i}$$



문 문 문

| Introduction<br>0000 | FEM modeling<br>●○○ | Stainless steel core technology | Keystoning analysis<br>0000 | Conclusions and further developments |
|----------------------|---------------------|---------------------------------|-----------------------------|--------------------------------------|
| Sensiti              | vity anal           | ysis                            |                             |                                      |

#### Input parameters

width compaction

$$w_c = \frac{l_f}{l_i} = \frac{l_i - \Delta l}{l_i}$$

heigth compaction

$$h_c = \frac{h_f}{h_i} = \frac{h_i - \Delta h}{h_i}$$

#### Output parameters

- equivalent plastic strain
- plastic strain intensity



э

-

| Sensiti              | vitv anal           | vsis                            |                             |                                      |
|----------------------|---------------------|---------------------------------|-----------------------------|--------------------------------------|
| Introduction<br>0000 | FEM modeling<br>●○○ | Stainless steel core technology | Keystoning analysis<br>0000 | Conclusions and further developments |

#### Input parameters

width compaction

$$w_c = \frac{l_f}{l_i} = \frac{l_i - \Delta l}{l_i}$$

heigth compaction

$$h_c = \frac{h_f}{h_i} = \frac{h_i - \Delta h}{h_i}$$

#### Output parameters

- equivalent plastic strain
- plastic strain intensity

#### Old strain map



< 4 P < 3



э

| Strain       | map          |                                 |                     |                                      |
|--------------|--------------|---------------------------------|---------------------|--------------------------------------|
| Introduction | FEM modeling | Stainless steel core technology | Keystoning analysis | Conclusions and further developments |
| 0000         | ○●○          | 0000                            | 0000                |                                      |

- equivalent plastic strain taken from diagonals
- ordered in decreasing value along diagonals
- only in points where there is tensile stress



э

• • = • • = •

| Strain       | man          |                                 |                     |                                      |
|--------------|--------------|---------------------------------|---------------------|--------------------------------------|
| Introduction | FEM modeling | Stainless steel core technology | Keystoning analysis | Conclusions and further developments |
| 0000         | ○●○          | 0000                            | 0000                |                                      |

- equivalent plastic strain taken from diagonals
- ordered in decreasing value along diagonals
- only in points where there is tensile stress





| Strain       | man          |                                 |                     |                                      |
|--------------|--------------|---------------------------------|---------------------|--------------------------------------|
| Introduction | FEM modeling | Stainless steel core technology | Keystoning analysis | Conclusions and further developments |
| 0000         | ○●○          | 0000                            | 0000                |                                      |

- equivalent plastic strain taken from diagonals
- ordered in decreasing value along diagonals
- only in points where there is tensile stress





| Strain       | man          |                                 |                     |                                      |
|--------------|--------------|---------------------------------|---------------------|--------------------------------------|
| Introduction | FEM modeling | Stainless steel core technology | Keystoning analysis | Conclusions and further developments |
| 0000         | ○●○          | 0000                            | 0000                |                                      |

- equivalent plastic strain taken from diagonals
- ordered in decreasing value along diagonals
- only in points where there is tensile stress





| Strain       | man          |                                 |                     |                                      |
|--------------|--------------|---------------------------------|---------------------|--------------------------------------|
| Introduction | FEM modeling | Stainless steel core technology | Keystoning analysis | Conclusions and further developments |
| 0000         | ○●○          | 0000                            | 0000                |                                      |

- equivalent plastic strain taken from diagonals
- ordered in decreasing value along diagonals
- only in points where there is tensile stress





| Strain       | man          |                                 |                     |                                      |
|--------------|--------------|---------------------------------|---------------------|--------------------------------------|
| Introduction | FEM modeling | Stainless steel core technology | Keystoning analysis | Conclusions and further developments |
| 0000         | ○●○          | 0000                            | 0000                |                                      |

- equivalent plastic strain taken from diagonals
- ordered in decreasing value along diagonals
- only in points where there is tensile stress





| Strain       | man          |                                 |                     |                                      |
|--------------|--------------|---------------------------------|---------------------|--------------------------------------|
| Introduction | FEM modeling | Stainless steel core technology | Keystoning analysis | Conclusions and further developments |
| 0000         | ○●○          | 0000                            | 0000                |                                      |

- equivalent plastic strain taken from diagonals
- ordered in decreasing value along diagonals
- only in points where there is tensile stress



| Introduction | FEM modeling | Stainless steel core technology | Keystoning analysis | Conclusions and further developments |
|--------------|--------------|---------------------------------|---------------------|--------------------------------------|
| 0000         | ○○●          | 0000                            | 0000                |                                      |
| <b>D</b>     |              |                                 |                     |                                      |







æ

| Introduction | FEM modeling | Stainless steel core technology | Keystoning analysis | Conclusions and further developments |
|--------------|--------------|---------------------------------|---------------------|--------------------------------------|
| 0000         | ○○●          | 0000                            | 0000                |                                      |
| Results      | 5            |                                 |                     |                                      |





æ

< ロ > < 回 > < 回 > < 回 > < 回 >

| Introduction | FEM modeling | Stainless steel core technology | Keystoning analysis | Conclusions and further developments |
|--------------|--------------|---------------------------------|---------------------|--------------------------------------|
| 0000         | ○○●          | 0000                            | 0000                |                                      |
| Results      | 5            |                                 |                     |                                      |



 $w_c$  between 0.99 and 0.95



æ

э

< E

| Introduction | FEM modeling | Stainless steel core technology | Keystoning analysis | Conclusions and further developments |
|--------------|--------------|---------------------------------|---------------------|--------------------------------------|
| 0000         | ○○●          | 0000                            | 0000                |                                      |
| Result       | S            |                                 |                     |                                      |



 $w_c$  between 0.99 and 0.95

For lower values of  $w_c$  the right part of the first strand can become as critic as the left one.



э

| 00000<br>CC        | 000 | •000 | 0000 |  |  |
|--------------------|-----|------|------|--|--|
| SS core technology |     |      |      |  |  |

#### Further developments

### Cables with a **stainless steel** core in order to decrease eddy currents



э

・ 同 ト ・ ヨ ト ・ ヨ ト

| Introduction<br>0000 | FEM modeling | Stainless steel core technology<br>●000 | Keystoning analysis<br>0000 | Conclusions and further developments |
|----------------------|--------------|-----------------------------------------|-----------------------------|--------------------------------------|
| SS cor               | e techno     | logy                                    |                             |                                      |

#### Further developments

Cables with a **stainless steel** core in order to decrease eddy currents

#### Objective

Studying the mechanical behaviour of the core and its influence on the strands deformation.



э

• • • • • • •

| Introduction<br>0000 | FEM modeling | Stainless steel core technology<br>•000 | Keystoning analysis<br>0000 | Conclusions and further developments |
|----------------------|--------------|-----------------------------------------|-----------------------------|--------------------------------------|
| SS cor               | e techno     | logy                                    |                             |                                      |

#### Further developments

Cables with a **stainless steel** core in order to decrease eddy currents

#### Objective

Studying the mechanical behaviour of the core and its influence on the strands deformation.





| Introduction<br>0000 | FEM modeling | Stainless steel core technology<br>○●○○ | Keystoning analysis<br>0000 | Conclusions and further developments |
|----------------------|--------------|-----------------------------------------|-----------------------------|--------------------------------------|
| FEM n                | nodeling     |                                         |                             |                                      |

The core is affected by **buckling** before plastic deformation.



★ ∃ → ★

| Introduction<br>0000 | FEM modeling | Stainless steel core technology<br>○●○○ | Keystoning analysis | Conclusions and further developments |
|----------------------|--------------|-----------------------------------------|---------------------|--------------------------------------|
| FEM n                | nodeling     |                                         |                     |                                      |

The core is affected by **buckling** before plastic deformation.





э

< ∃ >

| Introduction<br>0000 | FEM modeling | Stainless steel core technology<br>0●00 | Keystoning analysis<br>0000 | Conclusions and further developments |
|----------------------|--------------|-----------------------------------------|-----------------------------|--------------------------------------|
| FEM n                | nodeling     |                                         |                             |                                      |

The core is affected by **buckling** before plastic deformation.



**Friction** with the strands represents the buckling load.

→ Ξ →



| Introduction<br>0000 | FEM modeling | Stainless steel core technology<br>0●00 | Keystoning analysis<br>0000 | Conclusions and further developments |
|----------------------|--------------|-----------------------------------------|-----------------------------|--------------------------------------|
| FEM n                | nodeling     |                                         |                             |                                      |

The core is affected by **buckling** before plastic deformation.



**Friction** with the strands represents the buckling load.

#### Issues

- After buckling the problem loses a plane of symmetry
- For non-linear buckling analysis it is necessary to insert a defect in the structure that is going to buckle.







æ

(日)



#### The fictitious load is then gently removed during regular steps



→ < Ξ → <</p>



#### The fictitious load is then gently removed during regular steps

Plastic strain after fictitious load







э

< ロ > < 同 > < 三 > < 三 >





э

< ロ > < 同 > < 三 > < 三 >



The code permits to parametrize the core length and thickness

A comparison with other cables is ongoing

• □ ▶ • □ ▶ • □ ▶

Introduction FEM modeling Stainless steel core technology 6000 Conclusions and further developments 6000 Conclusions 6000

#### Previous work hypothesis

The most damaged strand location **can change** along the cable thanks to load ripartition effects.





#### Previous work hypothesis

The most damaged strand location **can change** along the cable thanks to load ripartition effects.



#### New considerations

The second strand in cable is always the most loaded







- keystoning starts after a spring-back step
- not all the strands are loaded from the beginning



• • = • • = •



- keystoning starts after a spring-back step
- not all the strands are loaded from the beginning





э

・ 同 ト ・ ヨ ト ・ ヨ ト



- keystoning starts after a spring-back step
- not all the strands are loaded from the beginning



Use of different keyoptions for the contacts elements:

- no separation contact
- unilateral contacts with friction



A (1) > A (2) > A



before spring-back





э

・ 同 ト ・ ヨ ト ・ ヨ ト





- 4 同 ト 4 ヨ ト 4 ヨ ト

э



Federico Bucciarelli Mechanical Analyses of Nb<sub>3</sub>Sn Rutherford-type cables







э

(日)



< ロ > < 同 > < 三 > < 三 >

э





э

< ロ > < 同 > < 三 > < 三 >



The most critical strand remains the second one even if other strands are higly deformed.



| Introduction<br>0000 | FEM modeling | Stainless steel core technology | Keystoning analysis | Conclusions and further developments |
|----------------------|--------------|---------------------------------|---------------------|--------------------------------------|
| Worklo               | oad steps    | 5                               |                     |                                      |

#### We want to obtain information about the operative conditions



æ

• • = • • =





э

< ロ > < 同 > < 三 > < 三 >





э

< ロ > < 同 > < 三 > < 三 >





Introduction FEM modeling Stainless steel core technology Keystoning analysis Conclusions and further developments Conclusions and further developments

 A valid code for simulating core buckling, spring-back and keystoning has been written.



→ Ξ →

Introduction FEM modeling Stainless steel core technology Keystoning analysis Conclusions and further developments Conclusions and further developments

- A valid code for simulating core buckling, spring-back and keystoning has been written.
- It is now possible to make comparison between different cables' geometries.



Introduction FEM modeling Stainless steel core technology Keystoning analysis Conclusions and further developments

- A valid code for simulating core buckling, spring-back and keystoning has been written.
- It is now possible to make comparison between different cables' geometries.
- A full simulation of the keystone cable has to be performed.



Introduction FEM modeling Stainless steel core technology Keystoning analysis Conclusions and further developments

- A valid code for simulating core buckling, spring-back and keystoning has been written.
- It is now possible to make comparison between different cables' geometries.
- A full simulation of the keystone cable has to be performed.
- Work is ongoing to solve strands static sketches and create an analytical model.



Introduction FEM modeling Stainless steel core technology Keystoning analysis coo

Conclusions and further developments

- A valid code for simulating core buckling, spring-back and keystoning has been written.
- It is now possible to make comparison between different cables' geometries.
- A full simulation of the keystone cable has to be performed.
- Work is ongoing to solve strands static sketches and create an analytical model.
- Last step will be applying these techniques to BSCCO 2212.



| Introduction | FEM modeling | Stainless steel core technology | Keystoning analysis | Conclusions and further developments |
|--------------|--------------|---------------------------------|---------------------|--------------------------------------|
|              |              |                                 |                     |                                      |

### Thanks for your attention.



э

-∢ ≣ ▶

| Introduction | FEM modeling | Stainless steel core technology | Keystoning analysis | Conclusions and further developments |
|--------------|--------------|---------------------------------|---------------------|--------------------------------------|
|              |              |                                 |                     |                                      |

## Thanks for your attention.

Questions?



э

伺下 イヨト イヨト