
“GPS Bc637PCIe:study about
synchronization possibilities

and implementations”

Cosimo Della Santina

Topics of work
! Bc637PCIe (GPS)
One of the most used GPS functionality

is the possibility of synchronization.
" Synchronization of the system clock

with UTC
" Use interrupts to execute a code

periodically

Topics of work 2

My work was to study these topics,
account pro and cons, write some
sample code that can be used in future
to implements synchronized systems

Synchronization in MicroBoone
In MicroBoone experiment the data are acquired in

frames. Frames are 1.6 msec long with data sampled
at 2MHz. But the DAQ clock runs at a frequency of
16 MHz.

We need to know the GPS time corresponding to the
frame number NOW.

The effect is that we have in memory a 3-column table
of GPS time, DAQ Clock Time, Frame Number, as
many rows as seconds that we want to keep in a
circular buffer.

Clock synchronization
The main way to obtain clock synch. Is

using NTP protocol.
Network Time Protocol (NTP) is a

networking protocol for clock
synchronization between computer
systems over packet-switched, variable-
latency data networks (such as internet)

NTP and PTP

NTP is particularly convenient with
FermiLinux because, being a RedHat
fork, has already implemented NTP
demon.

On the other hand PTP, an evolution of
NTP protocol, ensures better
performance, but ad hoc switch are
needed.

Interrupt + GPS

As we have already said, GPS
generate a periodic signal that is called
Pulse Per Second
It is possible to see this signal as an
event, and to associate to it an
appropriate routine through the
mechanism of interruption.

Interrupt + GPS 2

In this way we can obtain a periodic
routine, with a period accurate at
nanoseconds
It is possible to implements periodic
routine also using timer (I've done it in
the consumer, see later)

Difference PPS/Timer

There are two important advantages in
use PPS+interrupts implementation
! PPS is strongly more accurate than

Timer
! PPS is Synchronized with

Coordinated Universal Time.
Therefore, for example, two different
hosts, using PPS, execute their
routine at the same time.

My codes

I've wrote some sample codes that
implement this mechanism, called
fancifully:

! GPS_1
! GPS_1_5
! GPS_2
! connection_control

GPS_1

This code include a main that sets up the
card and the OS Interrupt table, and an
interrupt routine, associated with PPS
event, that reads directly time and print
it.

The role of this is just demonstrate how
to write and set a periodic PPS code.

GPS_1 code: main

Main calls initialization functions and wait:
! bcStartPci(); sets and starts the device
! pci_set_ints(hBC_PCI); sets Interrupt

Descriptor Table placing handler routine in
it (bcStartIntEx(hBC_PCI,
bcIntHandlerRoutine, INTERRUPT_1PPS
& 0x7F))

GPS_1 code: interrupt

Interrupt code:
 //Get current time

 //bcReadDecTimeEx is a library function that reads current time

 bcReadDecTimeEx (hBC_PCI, &dectime, &min, &nano, &stat);

 //Print time read

 printf("pps_routine: %02d:%02d:%02d.%06lu%d \n",

 dectime.tm_hour, dectime.tm_min, dectime.tm_sec, min,
nano);

This output demonstrate that:
–Routine occurs each second
–Time is captured with a
random delay, due by the
execution of software between
interrupt signal and data
acquisition.

GPS_1 output
OUTPUT:
...
bcIntHandlerRoutine
pps_routine: 80:156:66.0040402
bcIntHandlerRoutine
pps_routine: 80:156:67.0140657
bcIntHandlerRoutine
pps_routine: 80:156:68.0030917
bcIntHandlerRoutine
pps_routine: 80:156:69.0041193
bcIntHandlerRoutine
pps_routine: 80:156:70.0041424
bcIntHandlerRoutine
pps_routine: 80:156:71.0041674
bcIntHandlerRoutine
pps_routine: 80:156:72.0141917
bcIntHandlerRoutine
pps_routine: 80:156:73.0052188
bcIntHandlerRoutine
pps_routine: 80:156:74.0032431
bcIntHandlerRoutine
pps_routine: 80:156:75.0032680
bcIntHandlerRoutine
pps_routine: 80:156:76.0022934
...

GPS_1_5
This code is similar to the previous

(GPS_1). The difference lies in how the
current time is obtained: in this new
implementation we use event register,
latching (on hardware level) the time in
which PPS arrives in it.

This code demonstrate how to latch an
event (that could be different from PPS)
time

Code differences
between 1 and 1_5

Into main I need to setup event register:
 iVal=1;

 EvDat.evtsrc = (BYTE)iVal;

 EvDat.evtctl = (BYTE)iVal;

 iVal=0;

 EvDat.evtlock = (BYTE)iVal;

 EvDat.evtsense = (BYTE)iVal;

 bcSetEventsData (hBC_PCI, &EvDat);

Into interrupt routine I only need to take time with
another function:

bcReadEventTimeEx (hBC_PCI, &evtmaj, &evtmin, &evtnano, &stat);

GPS_1_5 output
OUTPUT:
...
Time: 09/13/2012 17:01:07.0000000 Status: 7
Time: 09/13/2012 17:01:08.0000000 Status: 7
Time: 09/13/2012 17:01:09.0000000 Status: 7
Time: 09/13/2012 17:01:10.0000000 Status: 7
Time: 09/13/2012 17:01:11.0000000 Status: 7
Time: 09/13/2012 17:01:12.0000000 Status: 7
Time: 09/13/2012 17:01:13.0000000 Status: 7
Time: 09/13/2012 17:01:14.0000000 Status: 7
Time: 09/13/2012 17:01:15.0000000 Status: 7
Time: 09/13/2012 17:01:16.0000000 Status: 7
Time: 09/13/2012 17:01:17.0000000 Status: 7
...

N.B.:This output does
not demonstrate
anything about
precision of GPS: This
is GPS time, and not
UTC time. Then is
obvious that GPS
says that signal, that it
thinks to generate
each second, has a
infinite precision.

GPS_2

This code evolves GPS_1 (it doesn't use
event register), implementing the
classic paradigm of communication
Producer-Consumer, where producer is
the interrupt and consumer is a stand-
alone thread. The shared information is
the number of PPS that are arrived.

GPS_2 code
Producer(interrupt):

 //each time I need to get shared

//address

memory_loc_key = ftok(".",'M');

 if((id = shmget(memory_loc_key,
sizeof(long int), 0666))<0){/*...*/ }

 shm_ptr = shmat (id,NULL,0);

 if((int)shm_ptr == -1){...}

 //increment pps_counter

 (*((long int*)shm_ptr))++;

Consumer(thread):

//get shared address (one time)

memory_loc_key = ftok(".",'M');

 if((id = shmget(memory_loc_key,
sizeof(long int), 0666))<0){/*...*/ }

 shm_ptr = shmat (id,NULL,0);

 if((int)shm_ptr == -1){...}

 [...]

 While(1){

 //use data

 printf("I'm the consumer!: %ld \n", *((long
int*)shm_ptr));

 /*wait 0.5 sec*/

 }

GPS_2 output
...
bcIntHandlerRoutine
I'm the consumer!: 2926
I'm the consumer!: 2926
pps_routine: 87:144:244.0059356
bcIntHandlerRoutine
I'm the consumer!: 2927
I'm the consumer!: 2927
pps_routine: 87:144:245.0039618
bcIntHandlerRoutine
I'm the consumer!: 2928
I'm the consumer!: 2928
pps_routine: 87:144:246.0059860
bcIntHandlerRoutine
I'm the consumer!: 2929
I'm the consumer!: 2929
pps_routine: 87:144:247.0030130
...

connection_control

This simple code periodically (about 4
sec) requires packet46 to GPS card,
and reads in it information about status
of connection. Then it prints a message
describing this status.

This output was taken
when the antenna
was disconnected.

connection_control output

...
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
Status: No usable satellites
...

Conclusions

The codes that I've briefly explained are
simply sample codes, and they try to
show functionalities. It would be simple
to modify them, in order to satisfy the
various needs.

Next week I will make some studies
about FermiLab Database structure

