

FTK Fast Track Trigger for ATLAS

Carlo Pandini

26-09-2012

<ロト < 同ト < 回ト < 回ト = 三

FTK purposes overview

The motivation: precise SM & BSM measurements

 event selection with large number of **pile-up** events

- calorimetry isolation not sufficient at higher luminosity
- \Longrightarrow use tracking information to select particles from primary vertex

FTK is an highly parallel tracking system:

- global tracking in the ATLAS silicon detector: $p_T > 1$ GeV
- use full LVL1 trigger output rate \rightarrow high quality tracks for HLT

FTK architecture overview

- inner detector structure mapped in 64 overlapping η - ϕ towers
- ▶ 1 tower: Data Formatter DF + 2 parallel processing units → 2x (AM board + AUX board)
- DF: hits clustering + data mapping in 11 logical layers

Parallel processing units

4/20

- DO: calculate the coarse resolution super-strips (SSs) for the incoming full resolution clusters and send the SS to the AM, keep the full resolution for later use in the TF
- ► AM board → 4 LAMB → 4x32 AM chips: parallel matching with precomputed stored patterns (50k-100k patterns per chip)
- TF: linear calculation of helix parameter and χ² with full resolution hits retrieved by DO
- ► HW: duplicate tracks removal based on the number of shared hits and χ²

Don't Care feature

The AM chip can use 2 precisions at the same time, balancing the effect:

- ► fine resolution patterns (TSP patterns)⇒ lower fake rate but more AM space required
- ► coarse resolution patterns (AM patterns)⇒ less AM space required but greater output bandwidth

 TSP patterns generated and grouped in AM patterns

 tree structure

DC allows to change the SS resolution in a dynamic way:

- A: wide roads save pattern space;
- B,C: reduce fake using narrower SSs in some or all layers

・ロット 御マ キョット きょう

Multiple DC bits AM bank configurations

AM bank generation from TSP bank (fine resolution patterns bank):

- ΔSS_{TSP} = SS size for TSP bank = maximum precision
- $\Delta SS_{AM} = \Delta SS_{TSP} \times 2^{N_{DC}} = SS$ size for AM bank
- N_{DC} = number of DC bits = number of TSP SSs in one AM SSs
- \Rightarrow TSP bank configurations: 24x20x36 & 15x16x36
 - 24x36 (15x36) = 2-dim pixel superstrip dimension in number of silicon channels
 - 20 (16) = 1-dim SCT superstrip dimension

(position bits encoded with Gray Code) \longrightarrow

- ▶ (1,0) 1
- ▶ (0,1) 1
- ▶ (1,1) 1
- ▶ (1,2) 1
- (2,1) 1

XI			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(1,0) - 2
(0,1) - 2
(1,1) - 2
(1,2) - 2
(2,1) - 2

Multiple DC bits study - datasets

Efficiency study:

- \Rightarrow 100k single muon events
- AM size + Efficiency study:
- TSP = 24x20x36
- \Rightarrow 1500 $Z \rightarrow \mu\mu$ events
- \Rightarrow 46 pileup events
- $\Rightarrow \sqrt{s} = 14 \text{ TeV}, \text{ luminosity } 2 \times 10^{34}$ **TSP** = 15x16x36
- \Rightarrow 1500 WH events
- \Rightarrow 71 pileup events
- $\Rightarrow \sqrt{s} = 14$ TeV, luminosity 3×10^{34}

- \Rightarrow 7 Layer architecture
- $\Rightarrow 8 \eta \phi \text{ overlapping regions} \rightarrow 1$ region considered: barrel only
- \Rightarrow 16 sub-regions per each region
- ⇒ 8 Layer architecture
- ⇒ 64 $\eta \phi$ overlapping towers → 12 regions considered: (barrel + endcap)
- \Rightarrow 4 sub-regions per each region

Hardware constraints

#AM patterns: capacity of the AM board

- 2 AM boards per tower
- 4 LAMB per AM board
- 32 AM chips per LAMB
- 80k patterns per chip

\Rightarrow 20.48M AM patterns per tower

#Roads: output rate towards AUX card

- 1 AM board connected with the AUX card with 16 links 2 Gbps

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- maximum rate: 500 roads/event per link
- maximum rate: 8 kroads/event per board

\Rightarrow 16 kroads/event per tower

#Fits: average number of fits sustainable by the TF

- goal: 1 track in 1 ns
- time to fit 10000 combinations per TF
- 40 kfits/board

 \Rightarrow 80 kfits per tower

- magenta \rightarrow 30xDC_SCTx144 \rightarrow (1,2) DC_SCT
- ▶ lightgray \rightarrow 60xDC_SCTx72 \rightarrow (2,1) DC_SCT

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

- ▶ cyan \rightarrow 30xDC_SCTx72 \rightarrow (1,1) DC_SCT
- ▶ green \rightarrow 30xDC_SCTx36 \rightarrow (1,0) DC_SCT
- ▶ blue \rightarrow 15xDC_SCTx36 \rightarrow (0,1) DC_SCT

Efficiency vs ϕ - single μ - endcap & barrel

Endcap

1 DC bits SCT

2 DC bits SCT

Barrel

2 DC bits SCT

Efficiency vs η - single μ - endcap & barrel

Endcap

1 DC bits SCT

2 DC bits SCT

10-15 towers - muons - endcap 0.05

Barrel

1 DC bits SCT

2 DC bits SCT

Efficiency vs d_0 - single μ - endcap & barrel

1 DC bits SCT

Truths#d.2cm

1.5 2 Truth #d_n cm

0.

0.85

0.8

0.75

0.7

-2 -1.5 -1 -0.5 0 0.5

Efficiency vs z_0 - single μ - endcap & barrel

Endcap 1 DC bits SCT 2 DC bits SCT 10-15 - towers - muons - endcap 10-15 towers - muons - endcap Efficiency Efficiency 0 0.85 0.85 0.8 0.8 0.75 0.75 0.7 0.7 0.65 0.65 0.6 0.6 50 ruth #zocm -100 -50 0 -100 -50 50 100 Truth #z, cm 0 Barrel 1 DC bits SCT 2 DC bits SCT 26-31 - towers - muons - barrel 26-31 towers - muons - barrel Efficiency Efficiency 0.9 0.85 0.85 0.8 0.8 0.75 0.75 0.7 0.7 0.65 0.65

50 ruth #zocm

0.6

-100

-50

50 100 Truth #z_n cm

э

13/20

0.6

-100

-50

0

Efficiency vs p_T - single μ - endcap & barrel

Endcap

1 DC bits SCT

2 DC bits SCT

Barrel

2 DC bits SCT

э

14/20

26-31 towers:

DC bits	# TSP	# AM	Efficiency	(N)Roads/evt	(N)Fits/evt	(N)Tracks/evt
	·10 ⁶	·10 ⁶			·10 ³	
(0,1)-1	120	51	94.1 %	3909	22	50
(1,0)-1	120	47	94.5 %	4147	25	51
(1,1)-1	120	27	95.3 %	5395	47	53
(1,2)-1	120	16	96.1 %	8423	150	57
(2,1)-1	120	16	95.8 %	6783	116	48
(0,1)-2	120	21	96.4 %	7490	87	55
(1,0)-2	120	19	96.4 %	8781	118	57
(1,1)-2	120	10	97.1 %	10898	208	56
(1,2)-2	120	5	97.4 %	15562	585	59
(2,1)-2	120	5	97.25 %			

- #AM patterns, #Tracks, Roads and Fits evaluated only in tower 26

Results with 8 layers geometry - AM bank comparison

Barrel - towers $26 \rightarrow 31$:

Results with 8 layers geometry - AM bank comparison

Barrel - towers 26 \rightarrow 31:

Results with 8 layers geometry - AM bank comparison

Barrel - towers $26 \rightarrow 31$:

 \implies #AM patterns per tower = 20 $\times 10^{6}$

Barrel:

- ► ↑ Efficiency = 95.3 % ⇒ 95.0 %
- \downarrow #Fits = 47×10³ \Longrightarrow 38×10³
- ▶ ↓ #Roads/event = 5395 ⇒ 4415
- \downarrow #AM patterns= 27×10⁶ \Longrightarrow 20×10⁶

(5M AM patterns per sub-region)

 \implies AM bank with DC configuration (1,1) - 1 within the acceptable region

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Results with 8 layers geometry - #AM patterns constrained

