Study of different geometry for Mu2e Calorimeter

Antonio De Maria 09/26/2012

Mu2e goal

$$R_{\mu e} = \frac{\mu^- + Al \rightarrow e^- + Al}{\mu^- + Al \rightarrow \nu_{\mu} + Mg}$$

with a single-event-sensitivity (s.e.s.) estimated to be 2.3×10^{-17} for two years of data taking. Assuming R_{µe} $\approx 10^{-15}$, Mu2e might observe 50 signal events with a background of < 0.5 events.

Detector Solenoid

The detector has three main components: the stopping target, the tracker and the calorimeter.

Calorimeter's features

• Radiation length :

$$X_0(g/cm^2) \approx \frac{716 \cdot A}{Z(Z+1)\ln(287/\sqrt{Z})}g/cm^2$$

• Longitudinal shower development:

$$\frac{dE}{dt} = E_0 b \frac{(bt)^{a-1} e^{-bt}}{\Gamma(a)}$$

• Transverse shower development:

$$R_M(g/cm^2) \approx 21 MeV \frac{X_0}{\varepsilon(MeV)}$$

Impact angle distribution

Theta (degrees)

Baseline Geometry's Problem

- LYSO crystal's half size = 1.5 cm.
- Transverse distance covered from entry point to shower max is :

showerMax $\cdot \sin(45^\circ) \approx 3.6 \cdot cm \cdot \sin(45^\circ) \approx 2.5 \cdot cm$

Most of the energy deposited by conversion electron is contained in a cell near the first cell hit.

Simulation's features

- 10000 conversion electrons generated for every run.
- Events with maximum energy deposit in the calorimeter's edges crystals were not considered.

Clustering Algorithm

f(x-1,y -1)	f(x-1,y)	f(x-1,y +1)	
f(x,y -1)	f(x,y)	f(x,y+1)	
f(x+1,y -1) ↑	<i>f(x+1,y)</i>	f(x+1,y+ 1)	

w(-1,-1)	w(-1,0)	w(-1,1)
w(0,-1)	w(0,0)	w(0,1)
w(1,-1)	w(1,0)	w(1,1)

convolution matrix

Elementary LYSO cell

Clustering Algorithm

$$S_{3\cdot 3} = \sum_{s=-1}^{1} \sum_{t=-1}^{1} w(s,t) f(x+s,y+t)$$

where w(s,t)=1 are the coefficients of the convolution matrix; f(x+s,y+t) are the values of energy contained in the group of cells under examination; f(x,y) is the energy contained in the central cell.

Number of cells hit

Energy deposit in 3x3 matrix

energy deposit in 3x3 matrix

Maximum energy cell = first hit cell

• Baseline geometry:

$$\frac{evt_{E_max=E_fhit}}{tot_evt} = \frac{2331}{5414} = 43\%$$

• Rotated vane geometry:

$$\frac{evt_{E_max=E_fhit}}{tot_evt} = \frac{2535}{4042} = 63\%$$

Conclusions and next steps

- In this two months I have learned Mu2e software, writing some code files used to obtain data for event analysis.
- Next steps are:
 - Study of calorimeter's acceptance with the rotated vane geometry.
 - Implementation and development of position reconstruction algorithms.
 - Study of calorimeter's energy resolution.

Charged-Lepton Flavour-Violation (CLFV)

 $\mu^+ \rightarrow e^+ \gamma$ with current limit 2.4×10⁻¹², established by MEG experiment

CLFV processes for which the theoretical predictions are verified with the next generation of experiments

 $\mu^+ \rightarrow e^+ e^- e^+$ with current limit 1.0×10^{-12}

 $\mu^- N_{A,Z} \rightarrow e^- N_{A,Z}$ with a branching that depends on the material

The Mu2e apparatus

The beamline of Mu2e has two main components: the production target (PT) and the Transport Solenoid (TS). The detector has three main components: the stopping target, the tracker and the calorimeter.

The calorimeter is used to select the signal events and to confirm the position and energy measurements provided by the tracker

Backgrounds

Categories	Source	Events	Rate	
	μ Decay in Orbit	0.225	≈ 55%	
Intrinsic	Radiative µ Capture	< 0.002		
	Radiative π Capture	0.072		
Late arriving	Beam Electrons	0.036	$\approx 40\%$	
	μ Decay in Flight	< 0.063		
	π Decay in Flight	< 0.001		
	Cosmic Ray	0.016		
Miscellaneous	Pattern recognition		$\approx 5\%$	
	Errors	< 0.002		
Total		pprox 0.42		