A practical approach to detect turn to turn shorts during superconductive magnet fabrication

Giovanni Gabrielli

Supervisor: Luciano Elementi
Coordinator: Emanuela Barzi
Fermilab National Accelerator Laboratory

September 27, 2013

CLAS12 for Hall B experiment

Six superconductive magnets generate a toroidal magnetic field in order to deviate the debris coming from collisions between particles.
Each magnet is a double layered $\mathrm{Nb}_{3} \mathrm{Sn}$ coil with 117 turns per layer, winded, clamped and cured in Technical Division.

Turn to turn shorts

What is a short?

- It is an electrical contact between two consecutive turns

Turn to turn shorts

What is a short?

- It is an electrical contact between two consecutive turns
- It may appear at any time, most probably during winding or clamping

Turn to turn shorts

What is a short?

- It is an electrical contact between two consecutive turns
- It may appear at any time, most probably during winding or clamping
- Its model is a small resistance R, inversely proportional to the area and the pressure of the contact between the turns

Turn to turn shorts

What is a short?

- It is an electrical contact between two consecutive turns
- It may appear at any time, most probably during winding or clamping
- Its model is a small resistance R, inversely proportional to the area and the pressure of the contact between the turns
- Hard shorts are $\approx 0 \Omega$, soft shorts can be several Ω

Turn to turn shorts

What is a short?

- It is an electrical contact between two consecutive turns
- It may appear at any time, most probably during winding or clamping
- Its model is a small resistance R, inversely proportional to the area and the pressure of the contact between the turns
- Hard shorts are $\approx 0 \Omega$, soft shorts can be several Ω
- Simulated with resistors or wires (see pictures)

Preliminary study

CLAS12 turn to turn short detector

Task

Detect turn to turn shorts, both hard and as soft as possible.

Problems:

Solution:

CLAS12 turn to turn short detector

Task

Detect turn to turn shorts, both hard and as soft as possible.

Problems:

- Novel approach

Solution:

CLAS12 turn to turn short detector

Task

Detect turn to turn shorts, both hard and as soft as possible.

Problems:

- Novel approach
- TL theory doesn't work

Solution:

CLAS12 turn to turn short detector

Task

Detect turn to turn shorts, both hard and as soft as possible.

Problems:

- Novel approach
- TL theory doesn't work
- Very low DC resistance

Solution:

CLAS12 turn to turn short detector

Task

Detect turn to turn shorts, both hard and as soft as possible.

Problems:

- Novel approach
- TL theory doesn't work
- Very low DC resistance

Solution:

- AC steady state, high frequency, high impedance

CLAS12 turn to turn short detector

Task

Detect turn to turn shorts, both hard and as soft as possible.

Problems:

- Novel approach
- TL theory doesn't work
- Very low DC resistance

Solution:

- AC steady state, high frequency, high impedance
- Significant voltage drop between turns

AC impedance analysis

Setup:

- Inductive zone:
$|Z| \approx \omega L$, rising with frequency

Figure: Double layered unclamped coil AC impedance

AC impedance analysis

Setup:

- Inductive zone:
$|Z| \approx \omega L$, rising with frequency
- Each turn has higher impedance

Figure: Double layered unclamped coil AC impedance

AC impedance analysis

Setup:

- Inductive zone:
$|Z| \approx \omega L$, rising with frequency
- Each turn has higher impedance
- Softer short are more easily detectable

Figure: Double layered unclamped coil AC impedance

AC impedance analysis

Setup:

- Inductive zone:
$|Z| \approx \omega L$, rising with frequency
- Each turn has higher impedance
- Softer short are more easily detectable
- High frequency needed

Figure: Double layered unclamped coil AC impedance

General setup

Setup:

Setup

General setup

Setup:

- 19.8 kHz sine wave

Setup

General setup

Setup:

- 19.8 kHz sine wave
- $30 V_{R M S}$ output

Setup

General setup

Setup:

- 19.8 kHz sine wave
- $30 V_{R M S}$ output
- 3:7 step-up transformer

Setup

General setup

Setup:

- 19.8 kHz sine wave
- $30 V_{R M S}$ output
- 3:7 step-up transformer
- Automatic data acquisition:
LabView driver

Setup

Transformer

Transformer:

- Required by the Lock-in Amplifier

Setup

Transformer

Transformer:

- Required by the Lock-in Amplifier
- Low CMRR, huge offset

Setup

Transformer

Transformer:

- Required by the Lock-in Amplifier
- Low CMRR, huge offset
- "Walking effect"

Setup

Transformer

Transformer:

- Required by the Lock-in Amplifier
- Low CMRR, huge offset
- "Walking effect"
- Parasitic asymmetric
 capacitive coupling

Transformer

Transformer:

- Required by the Lock-in Amplifier
- Low CMRR, huge offset
- "Walking effect"
- Parasitic asymmetric capacitive coupling
- Handmade transformer: more distant coils, high frequency wire, negligible parasitic effects

Setup

LabView Driver

罍 LockinControllerDEF．Vi
Ele Edit Yiew Project
Operate Iools Window Help
Help

$\sqrt[4]{\text { Mag Cailibrated }}$	Outputs		－Overioad
		7）Phase Degrees	
0.020	mV	-108.430	－
6 xCalibrated		6） 8 Calibrated	
0.000	mV	－0．020	mV

Procedure

(1) A few scannings of all turns, one position (corner 1-12), to see repeatability, that is the precision of the method

Procedure

(1) A few scannings of all turns, one position (corner 1-12), to see repeatability, that is the precision of the method
(2) Scannings with different shorts to see position and amount of turn to turn voltage losses, that is the sensitivity and resolution of the method.

Results

Non shorted coil voltage curve

Non shorted vs. shorted coil voltage curves

Voltage losses

Non shorted vs. shorted coil phase curves

4 position method

In the very first turns it is harder to see a sharp loss with a smooth bending by its sides. A 4-position scanning can help increase the resolution.

NB: with low SNR, the help of the phase is fundamental.

Conclusions and problems

Resolution: up to 1Ω in middle turns, up to a few hundreds $m \Omega$ in the first 5. But:

Example

Conclusions and problems

Resolution: up to 1Ω in middle turns, up to a few hundreds $m \Omega$ in the first 5. But:

Example

- $\left|Z_{\text {coil }}\right|=735 \Omega$

Conclusions and problems

Resolution: up to 1Ω in middle turns, up to a few hundreds $m \Omega$ in the first 5. But:

Example

- $\left|Z_{\text {coil }}\right|=735 \Omega$
- $\left|Z_{\text {turn }}\right| \approx \frac{\left|Z_{\text {coil }}\right|}{117 \cdot 2} \approx 3 \Omega$

Conclusions and problems

Resolution: up to 1Ω in middle turns, up to a few hundreds $m \Omega$ in the first 5. But:

Example

- $\left|Z_{\text {coil }}\right|=735 \Omega$
- $\left|Z_{\text {turn }}\right| \approx \frac{\left|Z_{\text {coil }}\right|}{117.2} \approx 3 \Omega$
- $\left|Z_{\text {short }}\right|=150 \mathrm{~m} \Omega$

Conclusions and problems

Resolution: up to 1Ω in middle turns, up to a few hundreds $m \Omega$ in the first 5. But:

Example

- $\left|Z_{\text {coil }}\right|=735 \Omega$
- $\left|Z_{\text {turn }}\right| \approx \frac{\left|Z_{\text {coil }}\right|}{117.2} \approx 3 \Omega$
- $\left|Z_{\text {short }}\right|=150 \mathrm{~m} \Omega$
- Loss $\approx 1-\frac{\left|Z_{\text {short }}\right|}{\left|Z_{\text {turn }}\right|} \approx 95 \%$

Conclusions and problems

Resolution: up to 1Ω in middle turns, up to a few hundreds $m \Omega$ in the first 5. But:

Example

- $\left|Z_{\text {coil }}\right|=735 \Omega$
- $\left|Z_{\text {turn }}\right| \approx \frac{\left|Z_{\text {coio }}\right|}{117.2} \approx 3 \Omega$
- $\left|Z_{\text {short }}\right|=150 \mathrm{~m} \Omega$
- Loss $\approx 1-\frac{\left|Z_{\text {shorr }}\right|}{\left|Z_{\text {turn }}\right|} \approx 95 \%$

Problems

(1) Why don't we ever see such huge losses?

Conclusions and problems

Resolution: up to 1Ω in middle turns, up to a few hundreds $m \Omega$ in the first 5. But:

Example

- $\left|Z_{\text {coil }}\right|=735 \Omega$
- $\left|Z_{\text {turn }}\right| \approx \frac{\left|Z_{\text {coil }}\right|}{117.2} \approx 3 \Omega$
- $\left|Z_{\text {short }}\right|=150 \mathrm{~m} \Omega$
- Loss $\approx 1-\frac{\left|Z_{\text {short }}\right|}{\left|Z_{\text {turn }}\right|} \approx 95 \%$

Problems

(1) Why don't we ever see such huge losses?
(2) Why should a short influence even the nearest turns?

Zero model for currents in a shorted coil

Zero model for currents in a shorted coil

- Shorted turn (in red) is "bypassed"

Zero model for currents in a shorted coil

Zero model for currents in a shorted coil

- Shorted turn (in red) is "bypassed"
- $B \propto V$ const, $i_{1} \propto \frac{1}{\left|Z_{\text {coil }}\right|}$ rises slightly

Zero model for currents in a shorted coil

- Shorted turn (in red) is "bypassed"
- $B \propto V$ const, $i_{1} \propto \frac{1}{\left|Z_{\text {coil }}\right|}$ rises slightly
- High $i_{s t}<0$ generates high $B_{s t}<0$ to compensate $B_{\text {tot }}$

Zero model for currents in a shorted coil

- Shorted turn (in red) is " bypassed"
- $B \propto V$ const, $i_{1} \propto \frac{1}{\left|Z_{\text {coil }}\right|}$ rises slightly
- High $i_{s t}<0$ generates high $B_{\text {st }}<0$ to compensate $B_{\text {tot }}$
- High $i_{s h}$ gives relatively high voltage drop $V_{\text {sh }}$

What (almost) really happens

What (almost) really happens

- Mutual induction: the shorted coil is the "secondary"

What (almost) really happens

- Mutual induction: the shorted coil is the "secondary"
- $V_{s t}$ is still positive because of Lenz's Law

What (almost) really happens

- Mutual induction: the shorted coil is the "secondary"
- $V_{s t}$ is still positive because of Lenz's Law
- $B_{s t}<0$ influences mostly the nearest turns

What (almost) really happens

- Mutual induction: the shorted coil is the "secondary"
- $V_{s t}$ is still positive because of Lenz's Law
- $B_{s t}<0$ influences mostly the nearest turns

Despite this is a zero model, experimental data fit this theoretical result with good approximation.

High Resolution DC resistance measure

Task
Measure small DC resistances with as high precision as possible.

High Resolution DC resistance measure

Task

Measure small DC resistances with as high precision as possible.

- 4-wire measurement with $81 / 2$ digits resolution multimeter 3458A from Agilent: less than 4 significant digit for a 1Ω shunt.

High Resolution DC resistance measure

Task

Measure small DC resistances with as high precision as possible.

- 4-wire measurement with $81 / 2$ digits resolution multimeter 3458A from Agilent: less than 4 significant digit for a 1Ω shunt.
- "Enhanced 4W" needed: higher currents for very low resistances.

Setup

Measuring the shunts

(1) 3458A as ammeter, $I \approx 1 A$ imposed, measured $R_{1} \approx 1 \Omega$ with 5 significant digits.

Setup

Measuring the shunts

(1) 3458A as ammeter, I $\approx 1 A$ imposed, measured $R_{1} \approx 1 \Omega$ with 5 significant digits.

(2) 3458A as voltmeter on R_{1} as shunt, $I \approx 1 A$ imposed, measured $R_{2} \approx 10 \mathrm{~m} \Omega$ and $R_{3} \approx 1 \mathrm{~m} \Omega$ with 4 and 3 significant digits.

Setup

Measuring the shunts

(1) 3458A as ammeter, I $\approx 1 A$ imposed, measured $R_{1} \approx 1 \Omega$ with 5 significant digits.

(2) 3458A as voltmeter on R_{1} as shunt, $I \approx 1 A$ imposed, measured $R_{2} \approx 10 \mathrm{~m} \Omega$ and $R_{3} \approx 1 \mathrm{~m} \Omega$ with 4 and 3 significant digits.

(3) The same way with just R_{2} and R_{3} to double check their ratio at higher currents.

Setup

Measuring the coil

(9) Coil as load, R_{2} and R_{3} as shunts, currents from 1 to $10 A$. Measured $R_{\text {coil }}$ with no less than 3 significant digits. NB: Voltage source used because current source did not work with reactive loads.

Shunts

Im avg	Va avg	Vb avg	Vc avg	Ra avg	Rb avg	Rc avg
1.00538	1.00577	10.02065	0.9955	1.000387913	9.967027393	0.99017287
0.901365	0.90175	8.9885	0.8928	1.00042713	9.972097874	0.990497745
0.8944	0.89479	8.909	0.885	1.000436047	9.960867621	0.989490161
0.89587		8.9345	0.8884		9.972987152	0.991661737
			Average:	1.00041703	9.967839188	0.99066020
			St. Dev.	0.00002091	0.003986671	0.00074192
			\% St. Dev.	0.002090\%	0.039995\%	0.074891\%
			Final values:	1.0004	9.968	0.991

Small test coil

Vshunt (mV)	Rshunt (mOhms)	I meas (A)	Vcoil (mV)	R coil (mOhms)
10.325	9.968	1.035814607	26.919	25.98824136
20.831	9.968	2.089787319	54.315	25.99068312
40.791	9.968	4.092195024	106.33	25.98361011
70.705	9.968	7.093198234	184.3	25.98263772
102.76	9.968	10.30898876	267.95	25.99188011
1.025	0.991	1.034308779	26.876	25.98450341
2.0755	0.991	2.094349142	54.397	25.97322428
4.062	0.991	4.09889001	106.46	25.97288528
7.045	0.991	7.108980827	184.65	25.97418737
10.224	0.991	10.31685166	268.1	25.98660994

Average:
St. Dev.
\% St.Dev.
R :
25.98

4 significant digits.
25.98284627
0.00675612
0.0260\%

CLAS12 coil

Vshunt (mV)	Rshunt (mOhms)	I meas (A)	Vcoil (V)	R coil (mOhms)
10.767	9.968	1.080156501	0.9124	844.692412
26.497	9.968	2.65820626	2.2447	844.4416198
65.198	9.968	6.540730337	5.5207	844.0494739
102.34	9.968	10.26685393	8.664	843.8807114
1.113	0.991	1.123107972	0.9484	844.4424079
2.589	0.991	2.612512614	2.205	844.0150637
6.211	0.991	6.26740666	5.2891	843.9056674
10.355	0.991	10.44904137	8.8176	843.8668856

Average:	844.1617802
St. Dev.	0.2967168
\% St.Dev.	0.0351%
R	844

3 significant digits, but St. Dev is much less than half of the last digit.

A practical approach to detect turn to turn shorts during superconductive magnet fabrication

Giovanni Gabrielli

Supervisor: Luciano Elementi
Coordinator: Emanuela Barzi
Fermilab National Accelerator Laboratory

September 27, 2013

