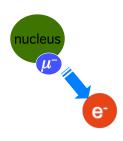
Improving pile-up handling in the Mu2e calorimeter MC

Fermilab Summer Internship

Student: Stefano Roberto Soleti **Supervisor**: Pavel Murat

September 26, 2013

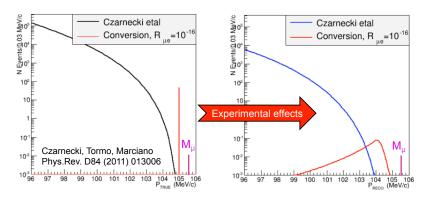


Outline

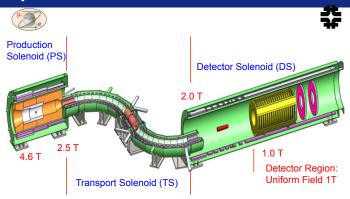
- Mu2e experiment
 - Mu2e calorimeter
- 2 Objectives
- 3 Current model of digitization
- 4 Parametrization of the signal
- 5 New algorithm
- 6 Implementation and validation
- 7 Validation

Mu2e experiment

$$\mu^- N \, \longrightarrow \, e^- N$$


- Initial state: muonic atom
- Final state:
 - Single mono-energetic electron ~ 105 MeV.
 - Recoiling nucleus (not measured).
 - Neutrino-less
- Non-zero but negligible rate in the Standard Model.
- Observable rate in many New Physics scenarios (Charged Lepton Flavor Violation).

How the signal would look like



$$R_{\mu e} = rac{\mu^- + N(A,Z)
ightarrow e^- + N(A,Z)}{\mu^- + N(A,Z)
ightarrow
u_{\mu} + N(A,Z-1)}$$

Measure E_e spectrum \rightarrow is there an excess at endpoint?

Mu2e experiment

- I μ is produced in the decay of π generated by a proton beam striking a production target.
- **2** μ are accompanied by e, π , anti-protons...
 - Wait for them to decay.
- 3 Pulse of low energy μ^- on thin Al foils (stopping target).
- 4 Momentum measurement by the tracker, energy measurement by the calorimeter.

Mu2e calorimeter

Role of the calorimeter

- Redundancy for the events reconstructed in the tracker.
- Trigger capability.
- Particle identification.

Requirements

- Energy resolution of $\sigma_E < 2\%$ at $100 \, \text{MeV}$ to confirm tracker energy measurement.
- Time resolution less than 0.5 ns (energy deposits in time with tracker events).
- Work in a magnetic field of 1 T.

10-34

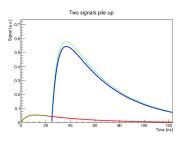
Current design

 \blacksquare Two-disks of \sim 1000 hexagonal LYSO crystals each.

Two

h crystal.

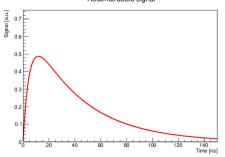
Objectives of the project


- Detector interaction simulation by GEANT4:
 - step-points along the particle path in the calorimeter.
- We want to implement a parametrized readout simulation + signal reconstruction in presence of a pile-up.
- Easily tunable algorithm.

Current model of digitization

- **1** G4 step-points closer than 30 ns merged at readout level.
- 2 Crystal hits closer than 100 ns merged at crystal level.

- For merged signals: energy is the sum of the energies and time is the time of the first signal.
- Limited ways of handling pile-up.
- Constants haven't a direct physics meaning, are correlated which complicates tuning.

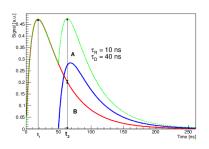

Current model: event signal at $t = 25 \, ns$ merged with the background one at $t = 0 \, ns$.

Parametrization of the signal

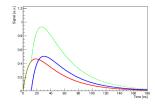
Standard signal shape parametrization

$$A\cdot (e^{-\frac{t}{\tau_D}}-e^{-\frac{t}{\tau_R}})=A\cdot e^{-\frac{t}{\tau_D}}(1-e^{\frac{t}{\tau_D}-\frac{t}{\tau_R}})$$

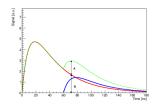
Parameters

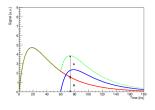

- Decay constant time $\tau_D = 40 \, ns$ (\sim decay time of LYSO);
- Rise time $\tau_R = 10 \text{ ns } (\sim \text{electronic rise time});$
- Amplitude $A \propto \frac{E}{\tau_D \tau_R}$ in $\int S(t) dt \propto E$ approximation, where E is the energy of the hit.

New algorithm


Double signal:
$$C_1 \cdot (e^{-\frac{t}{\tau_D}} - e^{-\frac{t}{\tau_R}}) + C_2 \cdot (e^{-\frac{t-\Delta t}{\tau_D}} - e^{-\frac{t-\Delta t}{\tau_R}})$$

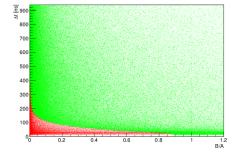
Steps


- 1 Merge all the signals within the leading edge time t_1 .
- **2** If $A > k \cdot B$ at $t = t_2$ (see figure), the two signals are considered separately, otherwise merge them. Start from k = 1.
- Signals simulated as combination of two exponentials: quite close to reality.
- Analytical solution.
- Tunable constants for the signal shape (τ_D, τ_R) .
- \blacksquare Tunable constant for signal merging (k).
- Issues related to timing resolution are outside the scope of this talk.


Examples

Merged
Second signal arrives within the leading edge time t_1 .

 $\frac{\text{Merged}}{\text{Second signal arrives after the}}$ leading edge time, but A < B.

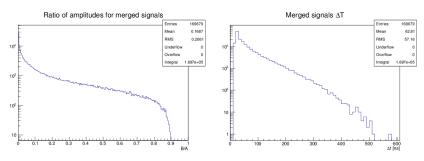

Not Merged Second signal arrives after the leading edge time and A > B (in this case k = 1).

Implementation and validation

Results

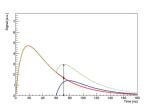
$$A \cdot (e^{-\frac{t}{\tau_D}} - e^{-\frac{t}{\tau_R}}) + B \cdot (e^{-\frac{t-\Delta t}{\tau_D}} - e^{-\frac{t-\Delta t}{\tau_R}})$$

Δt vs $\frac{B}{\Delta}$ for every signal

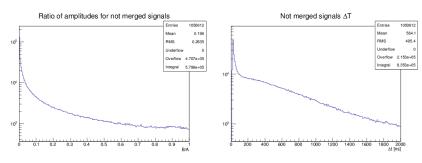


Three distinctly separated zones:

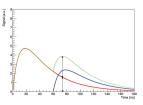
- $\Delta t \ll 100 \, ns$ and $\frac{B}{A} \ll 1$. Two signals very close in time and the second one much smaller than the first one: always merged.
- $\Delta t \gg 100 \, ns$ and $\frac{B}{A} \gg 0.1$. Two signals quite far in time and the second one not so smaller than the first one: never merged.
- $\Delta t < t_1 \approx 18 \, ns$. Two signals within leading edge time t_1 : always merged.


Results

Merged signals


These are the projections for the ratio $\frac{B}{A}$ and for the Δt of the merged signals:

- when the second signal is sufficiently large (~ 0.9 the first signal) merging does not occur;
- in the Δt distributions we observe a long tail up to 600 ns.


Results

Not merged signals

These are the projections for the ratio $\frac{B}{A}$ and for the Δt of the not merged signals:

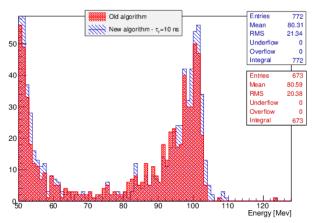
- the second signal is not merged when its amplitude is greater than the one of the first signal $(\frac{B}{A} > 1)$;
- there is a significant number of signals separated by less than 100 ns which get resolved.

Validation

Default pile-up handling algorithm (MakeCaloCrystalHits):

- A background hit 100 ns before the CE hit could "steal" a crystal from the cluster.
- A background hit within 100 ns after the CE one is always merged.
- A background hit more than 100 ns later is always considered a separate hit.

Expected improvement:

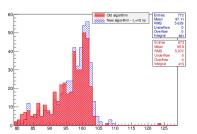

- 1 \sim 6000 hits in the calorimeter per μ bunch and \sim 1000 crystals per disk.
- 2 6/2 = 3 hits per crystal per μ bunch (same occupancy for the two disks).
- 3 For a μ bunch time of 1700 ns, we have 1 hit every \sim 550 ns.

Probability to lose the seed of the cluster because of the background

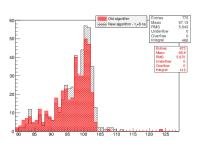
Previous algorithm: $\frac{100 \, ns}{550 \, ns} \sim 18 \, \%$ New algorithm: $\frac{18 \, ns}{550 \, ns} \sim 3.3 \, \%$

Improvement of the number of events in the CE peak of O(10)%

Cluster energy


With the new algorithm we observe:

- more entries in the [50 : 60] MeV interval (DIOs tail);
- less entries in the [60 : 80] MeV interval;
- more entries in the [80 : 110] MeV interval (CEs).


Energy of the CE clusters increases because there are less crystals "stolen" by the background: the clusters in [60 - 80] MeV interval move to the CE peak.

Cluster energy

$$au_R=10~ns$$

$$au_R = 5 \, ns$$

Assuming as the CE peak the interval [95-105] MeV we obtain:

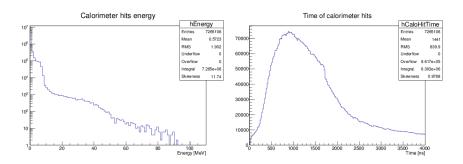
- Arr $\sim 24\%$ increase in the number of events in the peak with $\tau_R = 10 \ ns$.
- $\sim 25\%$ increase in the number of events in the peak with $\tau_R = 5 \, ns$.

The improvement obtained halving the rising time constant τ_R is quite small.

Summary and plans

- With this new algorithm we observe a O(20)% increase in the number of events in the CE peak.
- The constants used have now a direct physics meaning: τ_D and τ_R .
- Reducing the rising time constant τ_R by a factor of 2 (from 10 ns to 5 ns) doesn't improve significantly the clustering.

Back-ups


Modeling of the mixed events

Background	Simulated e. (millions)
DIOs	20
Neutrons	38
Protons	3.2
Photons	63

- These events are needed for 1000 µbunches.
- The numbers of events per μ bunch are taken from [1].
- The events are filtered by the MinimumHits module in trackerOrCalorimeter mode, in order the reduce the size of output files.

[1] Mu2e Doc 2297-v2.

Distributions of the calorimeter hits

- We generated 1000 conversion electrons with a standard mix of backgrounds [2].
- These are the distributions of the energy and of the time of the hits in the crystals.

[2] Mu2e Doc 2351-v1.