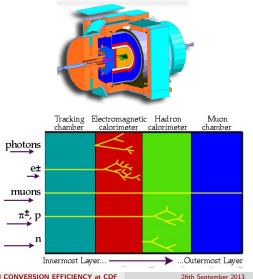
PHOTON CONVERSION EFFICIENCY at CDF

Focusing on: $D_0^* \rightarrow D_0 \gamma$ $D_{\pm}^* \rightarrow D_0 \pi$

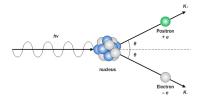
PAOLA RUGGIERO

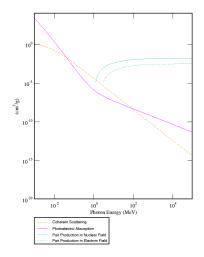
Supervisor: Patrick Lukens


26th September 2013

CDF detector

Layers:


- Silicon Detector
- Central outer tracker
- Electromagnetic Calorimeters
- Hadronic Calorimeters
- Muon Chambers


2 / 18

Introduction

Conversion Process

- Pair production when photons interact with matter
- Probability of conversion almost constant at high energy
- Precision of the tracking system for measurement of photon momentum

- **(())) (()) (())**

Why is it important?

- Estimate the distribution and quantity of material in the detector
 - Looking at the conversion point we are able to "xray" the CDF detector

- Application to the $\chi_{c1,2}$ reconstruction:
 - recontruction of the charmonium states through the decay $\chi_{c1,2}
 ightarrow J/\psi \gamma$
 - mass resolution sufficient to separate the $\chi_1(3510)$ from the $\chi_2(3555)$.

< 口 > < 同 > < 三 > < 三

$$D_0^*
ightarrow D_0 \gamma \text{ vs } D_{\pm}^*
ightarrow D_0 \pi$$

D MESONS:

- D lightest particle containing charm quarks:
- D^* is the first exited state: neutral and charged states
- D_0^* and D_{\pm}^* belong to the same isospin multiplet

ISOSPIN SYMMETRY

- Quantum number related to the strong interaction
- Particles affected equally by the strong force but with different charges treated as being different states of the same particle
- Isospin invariant production

Main goal of the project:

Understanding whether the following expression can be used to obtain the **conversion efficiency**:

$$1 = \frac{\sigma_{D_0^*}}{\sigma_{D_{\pm}^*}} = \frac{N_{D_0^*}}{N_{D_{\pm}^*}} \frac{\epsilon_{D_{\pm}^*}}{\epsilon_{D_0^*}}$$

- N = number of candidates, from data
- $\epsilon = efficiency$, from simulations
- Assumption: isospin invariant production (cross-sections ratio = 1)

We expect the efficiency to be a strong functions of kinematics variables:

- Transverse momentum
 - $p_T(D^*)$ bins (to use equality above)
 - $p_T(\gamma)$ (for each $p_T(D^*)$ bin, neutral case)

- 4 同 ト 4 ヨ ト 4 ヨ ト

Efficiency ratio (from SIM):

The photon efficiency is hidden in the efficiency ratio:

$$\frac{\epsilon_{D_{\pm}^{*}}}{\epsilon_{D_{0}^{*}}} = \frac{\epsilon_{\mathcal{D}^{\sigma}}}{\epsilon_{\mathcal{P}_{0}^{*}}} \quad \frac{\epsilon_{\pi}}{\epsilon_{\gamma}} = \frac{N(D_{\pm}^{*} \to D_{0}\pi_{\pm[reco]})}{N(D_{0}^{*} \to D^{0}\gamma_{[gen]})\epsilon(\gamma)}$$

•
$$N(D^*_{\pm} \to D_0 \pi_{\pm [reco]}) =$$
 reconstructed pions

- $N(D_0^* \to D_0 \gamma_{[gen]}) =$ generated photons (small sample for $\gamma_{[reco]}$)
- $\epsilon(\gamma) \Rightarrow$ UNKNOWN PARAMETER!

イロト 不得下 イヨト イヨト

Efficiency for PHOTONS

$$\epsilon(\gamma) = \frac{N_{D_0^*}}{N_{D_{\pm}^*}} \frac{N(D_{\pm}^* \to D_0 \pi_{\pm[reco]})}{N(D_0^* \to D_0 \gamma_{[gen]})}$$

"Generated Photons" \rightarrow Definition:

- $p_T(\gamma) > 1.0 GeV$
- Conversion simulation (we generate the **energy fraction** taken by e^+ , e^- , according to Rossi's treatment for Bethe-Heitler conversion)
- Acceptance simulation: $p_T(e^+, e^-) > 0.4 GeV$
- Efficiency simulation: (π) (CDF Note 8433)

$$\Rightarrow \epsilon(\gamma) = \epsilon_{Reco} * \epsilon_{Conv}$$

イロト イ団ト イヨト イヨト

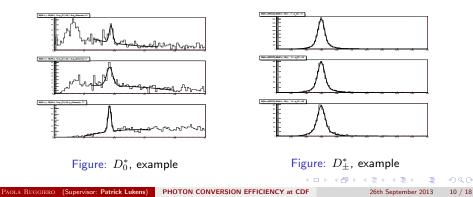
Introduction

Acceptance check:

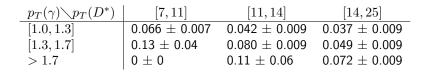
- Comparison (in simulations):
 - Reconstructed photons
 - Generated photons after acceptance and efficiency cuts

$p_T(\gamma) {\rm GeV}$	$N(\gamma[FAKE])$	$N(\gamma[RECO])$	$\frac{N(\gamma[RECO])}{N(\gamma[FAKE])}$
[1.0, 1.3]	35851 ± 189	3743 ± 61	0.104 ± 0.002
[1.3, 1.7]	47676 ± 218	4874 ± 70	0.102 ± 0.002
[1.7, 2.2]	48252 ± 220	5144 ± 72	0.107 ± 0.001
[2.2, 3.0]	54069 ± 233	5588 ± 75	0.103 ± 0.001
[3.0, 4.0]	40603 ± 202	4420 ± 66	0.109 ± 0.002
[4.0, 5.0]	23667 ± 154	2620 ± 51	0.111 ± 0.002

(日) (同) (日) (日)


Fitting Techniques DATA and SIMULATIONS

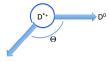
Signal:


- 1 Gaussian
- 2 Gaussians

Background:

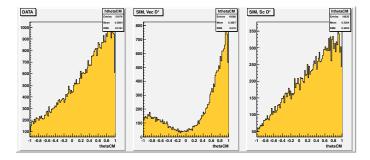
- Line: a + bx
- Modified polynomial: $aP_0(x) + bP_1(x) + cP_2(x)$

Conversion efficiency: Results

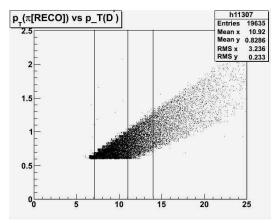


- We would expect to see similar results for photons with the same momentum (rows)
- We would expect similar results too for different momentum of the photon (acceptance cuts included)
- Efficiency seems to <u>raise</u> with $p_T(\gamma)$ and to <u>fall</u> with $p_T(D^*)$

A I > A = A A

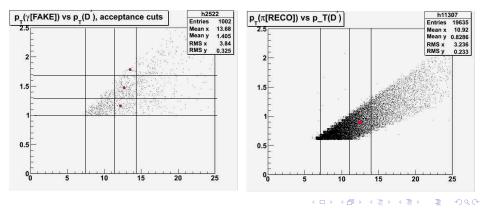

Sources of error (1):

- Distribution of the decay angle for charged D*:
 - DATA: D* from different sources
 - SIM: D^* from B decay only


<ロト < 回 > < 回 > < 回 > < 回 >

Lab

Source of error (1):


- Important effect : the acceptance strongly depends on $p_T(\pi) \iff \theta$
- Range of full acceptance: $p_T(D^*_{\pm}) \in [14, 25] GeV$

・ 同 ト ・ ヨ ト ・

Sources of error (2):

- Isospin invariance $\Leftrightarrow \langle p_T(D_0^*) \rangle \sim \langle p_T(D_{\pm}^*) \rangle$
- Condition NOT satisfied because of correlation between $p_T(\gamma)$, $p_T(D_0^*)$ \Rightarrow We should have not divided into $p_T(\gamma)$ bins

Final Result for Photon Conversion Efficiency

- Angular distribution: Range of full acceptance
- Isospin invariance: no binning on $p_T(\gamma)$
- \Rightarrow We are left with only one range: $p_{D^*} \in [14, 25] GeV$

$$\Rightarrow \epsilon(\gamma) = 0.057 \pm 0.004$$

A (1) N (1) N (1) N

Conclusions:

- We know how to reconstruct the **neutral** D^{*} (~ 1300 events processing only 4 periods)
- We found a **first estimate** for the photon conversion efficiency: $\epsilon(\gamma) = 0.057 \pm 0.004$
- We found out acceptance issues that need to be fixed:
 - $D^*_{\pm} \to \theta$ distribution

イロト イポト イヨト イヨト

<ロ> (日) (日) (日) (日) (日)

BACKUP (1): DATA and SIMULATION SAMPLES

DATA:

• *xbhd0k*, 4 periods out of 38

SIMULATIONS:

- 2 Samples: equal number of events
- Standard Event Generator used for B-decays
- D* allowed to decay naturally (PDG listings)