Introduction Overview of the Analysis Heavy-flavor Correction Factor Fit with MCLimit $BR(top \rightarrow H^+b)$ Backup

Top Production and Decay into Tau

September 26th 2013

Measurement of top pair production with one hadronic tau decay

• Measure $\sigma_{t\bar{t}}$

Measurement of top pair production with one hadronic tau decay

• Measure $\sigma_{t\bar{t}}$

$$\propto \pm t\bar{t}$$

• Measure $BR(top \rightarrow \tau \nu b)$

$$\frac{\# t \rightarrow \tau \nu b}{\# t \rightarrow anxthing}$$

The Standard Model

- Describes fundamental particles and their interactions, except from gravity
- Explains well experimental data, but it's thought to be the low energy limit of a more fundamental theory

(日) (同) (三) (三)

The Top Quark

• Observed for the first time in 1995 at Tevatron

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - のへで

BR(top $\rightarrow \tau \nu b$)

The Top Quark

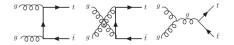
- Observed for the first time in 1995 at Tevatron
- Completes the family structure of the SM

The Top Quark

- Observed for the first time in 1995 at Tevatron
- Completes the family structure of the SM

Features

$$\begin{array}{l} \mathsf{m}_{top}\approx 173 \; \mathrm{GeV/c^2} \\ \tau_{top}\approx 5\times 10^{-25} \; \mathrm{s} \\ \mathsf{spin}=\frac{1}{2} \\ \frac{Q}{e}=\frac{2}{3} \end{array}$$

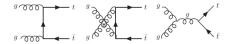

Production of $t\overline{t}$

- Through strong interaction
- Two posible processes:

Production of $t\overline{t}$

- Through strong interaction
- Two posible processes:

Gluon-gluon fusion 15% at Tevatron


• □ > < □ > < □ > < □ >

 $BR(top \rightarrow \tau \nu b)$

Production of $t\overline{t}$

- Through strong interaction
- Two posible processes:

Gluon-gluon fusion 15% at Tevatron

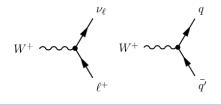
 $q\bar{q}$ annihilation 85% at Tevatron

(日) (四) (王) (王)

э

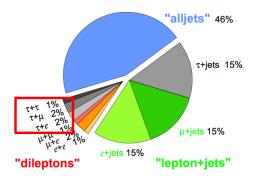
Top Quark Decay

ullet In the Standard Model 100%: $t \to W^+ b$, $\overline{t} \to W^- \overline{b}$



Top Quark Decay

ullet In the Standard Model 100%: $t o W^+ b$, $ar t o W^- ar b$


• W decays into W
ightarrow I
u or W
ightarrow q q'

Top Quark Decay

• $t\overline{t}$ decay channels are classified based on the the W decays Top Pair Branching Fractions

▲ロト ▲聞ト ▲臣ト ▲臣ト 三臣 - のへで

Tau Lepton

- Heaviest lepton ($m_{ au}=1.777$) GeV
- Decays with lifetime = 2.9×10^{-13} s
- \bullet Difficult to distinguish τ leptonic decays from isolated e or μ

$ au^-$ decay mode	BR (%)		
(leptonic)			
$\mu^- u_ au ar u_\mu$	17.4%		
$e^- u_ au ar u_e$	17.9%		
("one-prong" hadronic)			
$h^- u_ au (\geq 0 \text{ neutrals})$	49.5%		
$h^- \nu_\tau (> 0 \text{ neutrals})$	37.1%		
("three-prong" hadronic)			
$h^-h^+h^-\nu_{\tau} (\geq 0 \text{ neutrals})$	15.2%		

э

< ロ > < 同 > < 回 > < 回 >

Two Higgs Doublet Model

- In the Minimal SM particles acquire mass through the interaction with the Higgs field (complex doublet)
- Extensions with more Higgs doublets

< ロ > < 同 > < 回 > < 回 >

 $BR(top \rightarrow \tau \nu b)$

Two Higgs Doublet Model

- In the Minimal SM particles acquire mass through the interaction with the Higgs field (complex doublet)
- Extensions with more Higgs doublets
- 2HDM: two complex SU(2) doublets of scalar fields
- If $m_t > m_{H^{\pm}} + m_b$ the decay $top \rightarrow H^+ b$ is allowed
- H^+ couples preferentially to the au
- This would enhance $top \rightarrow \tau \nu b$

< ロ > < 同 > < 回 > < 回 >

Measurement of top pair production with one hadronic tau decay

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

 $BR(top \rightarrow \tau \nu b)$

Measurement of top pair production with one hadronic tau decay

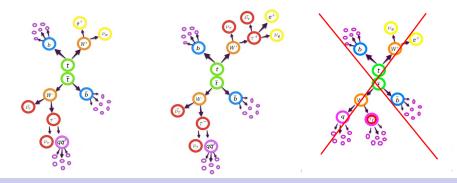
 $t \overline{t}
ightarrow b \overline{ au}
u \, \overline{b} e \overline{
u}$



・ロト ・同ト ・ヨト ・ヨト

Measurement of top pair production with one hadronic tau decay

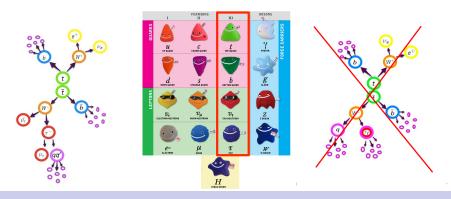
$$tar{t}
ightarrow bar{ au}
u \, ar{b} ear{
u} \, t \, ar{t}
ightarrow bar{ au} \, ar{t} ar{ au} \, ar{b} auar{
u}$$


Measurement of top pair production with one hadronic tau decay

$$tar{t}
ightarrow bar{ au}
u ar{b} ear{
u} \qquad tar{t}
ightarrow bar{ au}
u ar{b} auar{
u} \qquad tar{t}
ightarrow bar{ au}
u ar{b} auar{
u}$$


Measurement of top pair production with one hadronic tau decay First part of the Analysis:

 $t\bar{t}
ightarrow b\bar{ au}
u \, \bar{b}\ell\bar{
u} \, t\bar{t}
ightarrow b\bar{ au}
u \, \bar{b} au \bar{
u} \, t\bar{ au}
ightarrow b\bar{ au}
u \, \bar{b}\mu\bar{
u}$

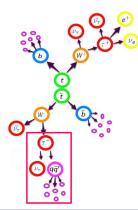


Measurement of top pair production with one hadronic tau decay Second part of the Analysis:

 $t\bar{t} \rightarrow b\bar{\tau}\nu \,\bar{b}\ell\bar{\nu}$ $t\bar{t} \rightarrow b\bar{\tau}\nu \,\bar{b}\tau\bar{\nu}$ $t\bar{t}
ightarrow b ar{ au}
u \, ar{b} q q'$

Measurement of top pair production with one hadronic tau decay Second part of the Analysis: $t\bar{t} \rightarrow b\bar{\tau}\nu \,\bar{b}\ell\bar{\nu}$ Only 3rd generation $t\bar{t} \rightarrow b\bar{\tau}\nu \,\bar{b}qq'$

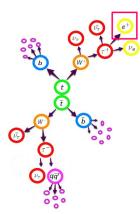
Measurement of top pair production with one hadronic tau decay



- \bullet One hadronic τ candidate
- \bullet One e or μ candidate
- Opposite electrc charge for lepton and τ

- Two or more jets
- At least one b-jet
- $E_T^{miss} > 10 \text{ GeV}$

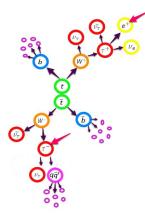
Measurement of top pair production with one hadronic tau decay



- One hadronic τ candidate
- One e or μ candidate
- Opposite electrc charge for lepton and τ

- Two or more jets
- At least one b-jet
- $E_T^{miss} > 10 \text{ GeV}$

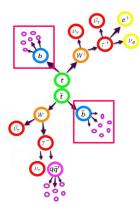
Measurement of top pair production with one hadronic tau decay



- \bullet One hadronic τ candidate
- One e or μ candidate
- Opposite electrc charge for lepton and τ

- Two or more jets
- At least one b-jet
- $E_T^{miss} > 10 \text{ GeV}$

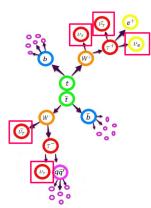
Measurement of top pair production with one hadronic tau decay



- $\bullet\,$ One hadronic $\tau\,$ candidate
- \bullet One e or μ candidate
- Opposite electrc charge for lepton and τ

- Two or more jets
- At least one b-jet
- $E_T^{miss} > 10 \text{ GeV}$

Measurement of top pair production with one hadronic tau decay



- $\bullet\,$ One hadronic $\tau\,$ candidate
- \bullet One e or μ candidate
- Opposite electrc charge for lepton and τ

- Two or more jets
- At least one b-jet
- $E_T^{miss} > 10 \text{ GeV}$

Measurement of top pair production with one hadronic tau decay

- $\bullet\,$ One hadronic $\tau\,$ candidate
- \bullet One e or μ candidate
- Opposite electrc charge for lepton and τ

- Two or more jets
- At least one b-jet
- $E_T^{miss} > 10 \text{ GeV}$

- Reject events with $M_{inv}(\ell, \tau)$ close to M_Z
- $H_T = E_T^{miss} + E_T^{tau} + \sum E_T^{jets} > 150 \text{ GeV}$
- Likelihood1 > 0 (E_T^{miss} , $M_T(\ell, E_T^{miss})$, E_T^{3rdjet}) to distinguish between misidentified and genuine τ
- Use the distribution of Likelihood2 ($M_T(\ell, E_T^{miss})$), E_T^{ℓ} , $\Delta \phi(\ell, E_T^{miss})$) used to discriminate between lepton+tau and di-tau decays

イロト イポト イヨト イヨト

- Reject events with $M_{inv}(\ell, \tau)$ close to M_Z
- $H_T = E_T^{miss} + E_T^{tau} + \sum E_T^{jets} > 150 \text{ GeV}$
- Likelihood1 > 0 (E_T^{miss} , $M_T(\ell, E_T^{miss})$, E_T^{3rdjet}) to distinguish between misidentified and genuine τ
- Use the distribution of Likelihood2 ($M_T(\ell, E_T^{miss})$), E_T^{ℓ} , $\Delta \phi(\ell, E_T^{miss})$) used to discriminate between lepton+tau and di-tau decays

イロト イポト イヨト イヨト

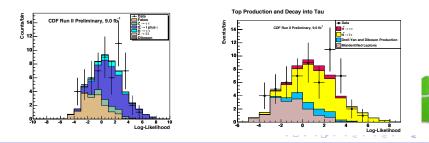
- Reject events with $M_{inv}(\ell, \tau)$ close to M_Z
- $H_T = E_T^{miss} + E_T^{tau} + \sum E_T^{jets} > 150 \text{ GeV}$
- Likelihood1 > 0 (E_T^{miss} , $M_T(\ell, E_T^{miss})$, E_T^{3rdjet}) to distinguish between misidentified and genuine τ
- Use the distribution of Likelihood2 ($M_T(\ell, E_T^{miss})$), E_T^{ℓ} , $\Delta \phi(\ell, E_T^{miss})$) used to discriminate between lepton+tau and di-tau decays

イロト イポト イヨト イヨト

Overview of the Improvements

- Analysis already blessed on June 28th 2012
- Two corrections:
 - Heavy-flavor correction for Drell-Yan processes with $b\bar{b}$
 - Inclusion of the feedback from the variation of $BR(top \rightarrow \tau \nu b)$ in $BR(top \rightarrow l \nu b)$ and $\sigma_{t\bar{t}}$

< ロ > < 同 > < 回 > < 回 >


Heavy-flavor Correction Factor

- Drell-Yan + heavy flavour underestimated in MC by 80%
- Heavy flavour is a small but significant contribution in Drell-Yan processes due to b-tagging

Heavy-flavor Correction Factor

- Drell-Yan + heavy flavour underestimated in MC by 80%
- Heavy flavour is a small but significant contribution in Drell-Yan processes due to b-tagging
- After the correction, no big changes in the distributions, e.g. for Likelihood1:

Heavy-flavor Correction Factor

• Change in the number of selected events after L1 > 0

Process	Muon Sample	Electron Sample	Total
Fakes	$1.80 \pm 0.31^{+0.13}_{-0.31}$	$2.20 \pm 0.64^{+0.18}_{-0.48}$	$4.01 \pm 0.71^{+0.31}_{-0.80}$
$Z/\gamma^* \rightarrow \tau \tau$	$1.12 \pm 0.07 \pm 0.25$	$1.41 \pm 0.08 \pm 0.29$	$2.53 \pm 0.11 \pm 0.53$
$Z/\gamma^* \rightarrow ll$	$0.10 \pm 0.03 \pm 0.03$	$0.03 \pm 0.01 \pm 0.01$	$0.13 \pm 0.03 \pm 0.04$
Diboson	$0.09 \pm 0.02 \pm 0.03$	$0.09 \pm 0.02 \pm 0.03$	$0.17 \pm 0.03 \pm 0.05$
$t\bar{t} \rightarrow \tau l + X$	$10.56 \pm 0.08 \pm 1.34$	$13.73 \pm 0.10 \pm 1.75$	$24.29 \pm 0.13 \pm 3.09$
$t\bar{t} \rightarrow \tau\tau + X$	$1.07 \pm 0.03 \pm 0.14$	$1.37 \pm 0.03 \pm 0.18$	$2.44 \pm 0.04 \pm 0.32$
Total Expected	$14.7 \pm 0.3^{+1.6}_{-1.7}$	$18.8 \pm 0.6^{+2.1}_{-2.1}$	$33.6 \pm 0.6^{+3.7}_{-3.8}$
Observed	12	24	36

Process	Muon Sample	Electron Sample	Total
Fakes	$1.80 \pm 0.31^{+0.13}_{-0.31}$	$2.20 \pm 0.64^{+0.18}_{-0.48}$	$4.01 \pm 0.71^{+0.31}_{-0.80}$
$Z/\gamma^* \rightarrow \tau\tau$	$1.25 \pm 0.08 \pm 0.25$	$1.53 \pm 0.08 \pm 0.29$	$2.78 \pm 0.11 \pm 0.53$
$Z/\gamma^* \rightarrow ll$	$0.14 \pm 0.03 \pm 0.03$	$0.03 \pm 0.01 \pm 0.01$	$0.17 \pm 0.03 \pm 0.04$
Diboson	$0.09 \pm 0.02 \pm 0.03$	$0.09 \pm 0.02 \pm 0.03$	$0.17 \pm 0.03 \pm 0.05$
$t\bar{t} \rightarrow \tau l + X$	$10.56 \pm 0.08 \pm 1.34$	$13.73 \pm 0.10 \pm 1.75$	$24.29 \pm 0.13 \pm 3.09$
$t\bar{t} \rightarrow \tau\tau + X$	$1.07 \pm 0.03 \pm 0.14$	$1.37 \pm 0.03 \pm 0.18$	$2.44 \pm 0.04 \pm 0.32$
Total Expected	$14.9 \pm 0.3^{+1.6}_{-1.7}$	$18.9 \pm 0.6^{+2.1}_{-2.1}$	$33.9 \pm 0.6^{+3.7}_{-3.8}$
Observed	12	24	36

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のQ@

Heavy-flavor Correction Factor

• Change in the number of selected events after L1 > 0

Process	Muon Sample	Electron Sample	Total
Fakes	$1.80 \pm 0.31^{+0.13}_{-0.31}$	$2.20 \pm 0.64^{+0.18}_{-0.48}$	$4.01 \pm 0.71^{+0.31}_{-0.80}$
$Z/\gamma^* \rightarrow \tau \tau$	$1.12 \pm 0.07 \pm 0.25$	$1.41 \pm 0.08 \pm 0.29$	$2.53 \pm 0.11 \pm 0.53$
$Z/\gamma^* \rightarrow ll$	$0.10 \pm 0.03 \pm 0.03$	$0.03 \pm 0.01 \pm 0.01$	$0.13 \pm 0.03 \pm 0.04$
Diboson	$0.09 \pm 0.02 \pm 0.03$	$0.09 \pm 0.02 \pm 0.03$	$0.17 \pm 0.03 \pm 0.05$
$t\bar{t} \rightarrow \tau l + X$	$10.56 \pm 0.08 \pm 1.34$	$13.73 \pm 0.10 \pm 1.75$	$24.29 \pm 0.13 \pm 3.09$
$t\bar{t} \rightarrow \tau \tau + X$	$1.07 \pm 0.03 \pm 0.14$	$1.37 \pm 0.03 \pm 0.18$	$2.44 \pm 0.04 \pm 0.32$
Total Expected	$14.7 \pm 0.3^{+1.6}_{-1.7}$	$18.8 \pm 0.6^{+2.1}_{-2.1}$	$33.6 \pm 0.6^{+3.7}_{-3.8}$
Observed	12	24	36

Process	Muon Sample	Electron Sample	Total
Fakes	$1.80 \pm 0.31^{+0.13}_{-0.31}$	$2.20 \pm 0.64^{+0.18}_{-0.48}$	$4.01 \pm 0.71^{+0.31}_{-0.80}$
$Z/\gamma^* \to \tau\tau$	$1.25 \pm 0.08 \pm 0.25$		$2.78 \pm 0.11 \pm 0.53$
$Z/\gamma^* \rightarrow ll$	$0.14 \pm 0.03 \pm 0.03$	$0.03 \pm 0.01 \pm 0.01$	
Diboson	$0.09 \pm 0.02 \pm 0.03$	$0.09 \pm 0.02 \pm 0.03$	$0.17 \pm 0.03 \pm 0.05$
$t\bar{t} \rightarrow \tau l + X$	$10.56 \pm 0.08 \pm 1.34$	$13.73 \pm 0.10 \pm 1.75$	$24.29 \pm 0.13 \pm 3.09$
$t\bar{t} \rightarrow \tau\tau + X$	$1.07 \pm 0.03 \pm 0.14$	$1.37 \pm 0.03 \pm 0.18$	$2.44 \pm 0.04 \pm 0.32$
Total Expected	$14.9 \pm 0.3^{+1.6}_{-1.7}$	$18.9 \pm 0.6^{+2.1}_{-2.1}$	$33.9 \pm 0.6^{+3.7}_{-3.8}$
Observed	12	24	36

Heavy-flavor Correction Factor

• Change in the number of selected events after L1 > 0

Process	Muon Sample	Electron Sample	Total
Fakes	$1.80 \pm 0.31^{+0.13}_{-0.31}$	$2.20 \pm 0.64^{+0.18}_{-0.48}$	$4.01 \pm 0.71^{+0.31}_{-0.80}$
$Z/\gamma^* \rightarrow \tau \tau$	$1.12 \pm 0.07 \pm 0.25$	$1.41 \pm 0.08 \pm 0.29$	$2.53 \pm 0.11 \pm 0.53$
$Z/\gamma^* \rightarrow ll$	$0.10 \pm 0.03 \pm 0.03$	$0.03 \pm 0.01 \pm 0.01$	
Diboson		$0.09 \pm 0.02 \pm 0.03$	
$t\bar{t} \rightarrow \tau l + X$	$10.56 \pm 0.08 \pm 1.34$	$13.73 \pm 0.10 \pm 1.75$	$24.29 \pm 0.13 \pm 3.09$
$t\bar{t} \rightarrow \tau \tau + X$	$1.07 \pm 0.03 \pm 0.14$	$1.37 \pm 0.03 \pm 0.18$	$2.44 \pm 0.04 \pm 0.32$
Total Expected	$14.7 \pm 0.3^{+1.6}_{-1.7}$	$18.8 \pm 0.6^{+2.1}_{-2.1}$	$33.6 \pm 0.6^{+3.7}_{-3.8}$
Observed	12	24	36

Process	Muon Sample	Electron Sample	Total
Fakes	$1.80 \pm 0.31^{+0.13}_{-0.31}$	$2.20 \pm 0.64^{+0.18}_{-0.48}$	$4.01 \pm 0.71^{+0.31}_{-0.80}$
$Z/\gamma^* \to \tau\tau$	$1.25 \pm 0.08 \pm 0.25$	$1.53 \pm 0.08 \pm 0.29$	$2.78 \pm 0.11 \pm 0.53$
$Z/\gamma^* \to ll$			$0.17 \pm 0.03 \pm 0.04$
Diboson		$0.09 \pm 0.02 \pm 0.03$	
$t\bar{t} \rightarrow \tau l + X$	$10.56 \pm 0.08 \pm 1.34$	$13.73 \pm 0.10 \pm 1.75$	$24.29 \pm 0.13 \pm 3.09$
$t\bar{t} \rightarrow \tau\tau + X$		$1.37 \pm 0.03 \pm 0.18$	$2.44 \pm 0.04 \pm 0.32$
Total Expected	$14.9 \pm 0.3^{+1.6}_{-1.7}$	$18.9 \pm 0.6^{+2.1}_{-2.1}$	$33.9 \pm 0.6^{+3.7}_{-3.8}$
Observed	12	24	36

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のQ@

Heavy-flavor Correction Factor

• Change in the number of selected events after L1 > 0

Process	Muon Sample	Electron Sample	Total	
Fakes	$1.80 \pm 0.31^{+0.13}_{-0.31}$	$2.20 \pm 0.64^{+0.18}_{-0.48}$	$4.01 \pm 0.71^{+0.31}_{-0.80}$	
$Z/\gamma^* \rightarrow \tau \tau$	$1.12 \pm 0.07 \pm 0.25$	$1.41 \pm 0.08 \pm 0.29$	$2.53 \pm 0.11 \pm 0.53$	
$Z/\gamma^* \rightarrow ll$	$0.10 \pm 0.03 \pm 0.03$	$0.03 \pm 0.01 \pm 0.01$	$0.13 \pm 0.03 \pm 0.04$	
Diboson	$0.09 \pm 0.02 \pm 0.03$	$0.09 \pm 0.02 \pm 0.03$	$0.17 \pm 0.03 \pm 0.05$	
$t\bar{t} \rightarrow \tau l + X$	$10.56 \pm 0.08 \pm 1.34$	$13.73 \pm 0.10 \pm 1.75$	$24.29 \pm 0.13 \pm 3.09$	
$t\bar{t} \rightarrow \tau \tau + X$	$1.07 \pm 0.03 \pm 0.14$	$1.37 \pm 0.03 \pm 0.18$	$2.44 \pm 0.04 \pm 0.32$	
Total Expected	$14.7 \pm 0.3^{+1.6}_{-1.7}$	$18.8 \pm 0.6^{+2.1}_{-2.1}$	$33.6 \pm 0.6^{+3.7}_{-3.8}$	
Observed	12	24	36	

Process	Muon Sample	Electron Sample	Total
Fakes	$1.80 \pm 0.31^{+0.13}_{-0.31}$	$2.20 \pm 0.64^{+0.18}_{-0.48}$	$4.01 \pm 0.71^{+0.31}_{-0.80}$
$Z/\gamma^* \rightarrow \tau\tau$	$1.25 \pm 0.08 \pm 0.25$	$1.53 \pm 0.08 \pm 0.29$	$2.78 \pm 0.11 \pm 0.53$
$Z/\gamma^* \rightarrow ll$	$0.14 \pm 0.03 \pm 0.03$	$0.03 \pm 0.01 \pm 0.01$	$0.17 \pm 0.03 \pm 0.04$
Diboson	$0.09 \pm 0.02 \pm 0.03$	$0.09 \pm 0.02 \pm 0.03$	$0.17 \pm 0.03 \pm 0.05$
$t\bar{t} \rightarrow \tau l + X$	$10.56 \pm 0.08 \pm 1.34$	$13.73 \pm 0.10 \pm 1.75$	$24.29 \pm 0.13 \pm 3.09$
$t\bar{t} \rightarrow \tau\tau + X$	$1.07 \pm 0.03 \pm 0.14$	$1.37 \pm 0.03 \pm 0.18$	
Total Expected	$14.9 \pm 0.3^{+1.6}_{-1.7}$	$18.9 \pm 0.6^{+2.1}_{-2.1}$	$33.9 \pm 0.6^{+3.7}_{-3.8}$
Observed	12	24	36

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Cross section

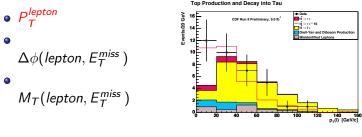
- The correction for the Drell-Yan + heavy flavor scale factor changes the number of expected events by about 0.7%
- This has an impact on the measured $t\bar{t}$ cross section

э

イロト イポト イヨト イヨト

Cross section

- The correction for the Drell-Yan + heavy flavor scale factor changes the number of expected events by about 0.7%
- This has an impact on the measured $t\bar{t}$ cross section


•
$$\sigma_{t\bar{t}} = \frac{N_{sel} - N_{bg}}{\sum [(BR_{l_{\tau}} \epsilon_{l_{\tau}} + BR_{\tau\tau} \epsilon_{\tau\tau}) \int \mathcal{L}dt]}$$

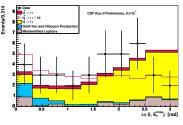
• $\sigma_{t\bar{t}} = 8.1 \pm 1.7(stat)^{+1.2}_{-1.1}(syst) \pm 0.5(lum)$ pb

э

イロト イポト イヨト イヨト

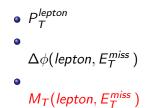
Used for the fit to discriminate between single-tau and di-tau

Top Production and Decay into Tau

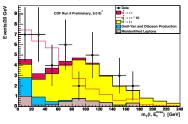

イロト イポト イヨト イヨト

э

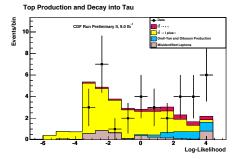
Used for the fit to discriminate between single-tau and di-tau



Top Production and Decay into Tau



Used for the fit to discriminate between single-tau and di-tau


Top Production and Decay into Tau

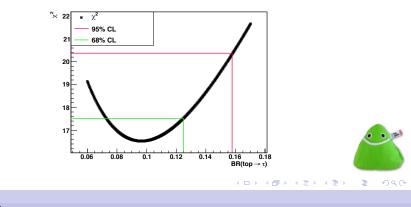
▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 めんゆ

Used for the fit to discriminate between single-tau and di-tau

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲ 圖 - のQ@

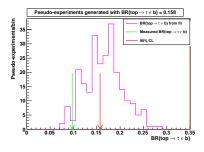
Fit to measure $BR(top \rightarrow \tau \nu b)$

- Using the MCLimit package
- Compare the expected distribution of the variable Likelihood2 with the distribution of the data
- Fit $BR(top \rightarrow \tau \nu b)$, i.e. amount of single-tau and di-tau signal to best match data (varying background/systematics within uncertainties)



Improvements to the Fit

- Correction to the formula for the fit
- In the Blessed Analysis $\sum BR(top \rightarrow anything)$ was not constrained to be one
- $BR(top \rightarrow e\nu b)$, $BR(top \rightarrow \mu\nu b)$, $BR(top \rightarrow had)$ decrease as $BR(top \rightarrow \tau\nu b)$ increase and vice-versa


$BR(top \rightarrow \tau \nu b)$ from the Fit

- Best value of $BR(top \rightarrow \tau \nu b)$: 0.096 \pm 0.028
- $BR(top \rightarrow \tau \nu b) < 0.158$ at 95% CL

Check of the 95% CL coverage

- Generate pseudo-experiments with $BR(top \rightarrow \tau \nu b) = 0.158$
- Fit them to find the best BR
- Count the number of times BR from fit < measured value
- The 95% coverage was confirmed

$BR(top \rightarrow H^+b)$

Assumptions:

• $BR(top \rightarrow W^+b) + BR(top \rightarrow H^+b) = 1$

•
$$BR(H^{\pm} \rightarrow \tau \nu) = 1$$

 $BR(top \rightarrow H^{+}b) = \frac{BR(top \rightarrow \overline{\tau}\nu b) - BR(W^{+} \rightarrow \overline{\tau}\nu)}{1 - BR(W^{+} \rightarrow \overline{\tau}\nu)}$

æ

イロン イロン イヨン イヨン

$BR(top \rightarrow H^+b)$

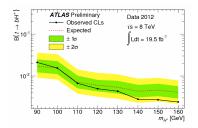
Assumptions:

• $BR(top \rightarrow W^+b) + BR(top \rightarrow H^+b) = 1$

•
$$BR(H^{\pm} \to \tau \nu) = 1$$

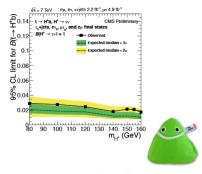
 $BR(top \to H^{+}b) = \frac{BR(top \to \overline{\tau}\nu b) - BR(W^{+} \to \overline{\tau}\nu)}{1 - BR(W^{+} \to \overline{\tau}\nu)}$

- Measured $BR(top \rightarrow \tau \nu b)$ below Standard Model
- Feldman-Cousins method to find 95% CL
- $BR(top \to H^+b) < 0.061$ at 95% CL



э

Limits on $BR(top \rightarrow H^+b)$ set by LHC


ATLAS

• 19.5 fb⁻¹, $\sqrt{s} = 8$ TeV

CMS

• 4.9 fb⁻¹, $\sqrt{s} = 7$ TeV

Conclusions

- $\bullet\,$ In this analysis dileptonic top pair decays with one hadronic $\tau\,$ are selected
- We improved the analysis correcting it for the heavy flavour scale factor in Drell-Yan processes and inserting the constrain $\sum BR(top \rightarrow anything) = 1$

< ロ > < 同 > < 回 > < 回 >

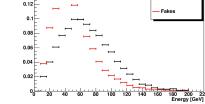
• $\sigma_{t\bar{t}} = 8.1 \pm 1.7 (stat)^{+1.2}_{-1.1} (syst) \pm 0.5 (lum)$ pb

•
$$BR(top \rightarrow \tau \nu b)$$
: 0.096 \pm 0.028

- $BR(top \rightarrow \tau \nu b) < 0.158$ at 95% CL
- $BR(top \rightarrow H^+b) < 0.06$ at 95% CL

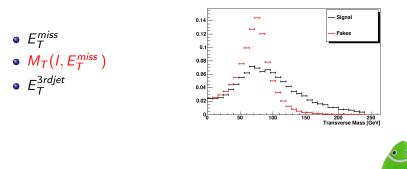
Introduction Overview of the Analysis Heavy-flavor Correction Factor Fit with MCLimit $BR(top \rightarrow H^+b)$ Backup

Thanks To Stephan, Aurore and Matteo And to the organizers of the Summer Student Program!


Backup

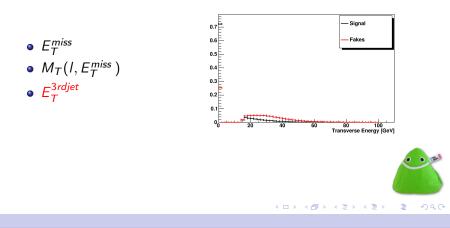
0.14

First Likelihood



▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - 釣�?

— Signal


First Likelihood

・ロト ・回ト ・ヨト ・ヨト

э

First Likelihood

Improvements to the fit

$$N = N^{l\tau} + N\tau\tau + N^{bg} = N^{bg} + \sum \epsilon A \left[BR(top \to l\nu b) + BR^{(fit)}(top \to \tau nub) + BR^{MC}(top \to \tau nub) \right] \\ \times 2BR^{(fit)}(top \to \tau nub) BR^{PDG}(\tau \to \nu jets) \sigma_{t\bar{t}} \int \mathcal{L} dt$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ▲臣 - の久で

Improvements to the fit

$$N = N^{l\tau} + N\tau\tau + N^{bg} =$$

$$N^{bg} + \sum \epsilon A \left[BR(top \to l\nu b) + BR^{(fit)}(top \to \tau nub) + BR^{MC}(top \to \tau nub) \right]$$

$$\times 2BR^{(fit)}(top \to \tau nub)BR^{PDG}(\tau \to \nu jets)\sigma_{t\bar{t}} \int \mathcal{L} dt$$

•
$$BR(top \rightarrow l\nu b) = BR^{SM}(top \rightarrow l\nu b) = BR^{SM}(top \rightarrow l\nu b) \left[1 + \frac{BR^{(MC)}(top \rightarrow \tau, nu, b) - BR^{(fit)}(top \rightarrow \tau\nu b)}{1 - BR^{SM}(top \rightarrow l\nu b)}\right]$$

• $\sigma_{t\bar{t}} = \sigma_{t\bar{t}}^{lep} \frac{BR^{MC}(top \rightarrow l\nu b)}{BR(top \rightarrow l\nu b)}$

••=

æ

・ロト ・回ト ・ヨト ・ヨト

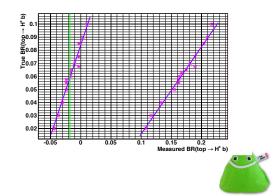
Scaling

•
$$N^{\tau\tau} = N^{\tau\tau(MC)} \frac{BR^{(fit)\,2}(top \to \tau\nu b)}{BR^{(MC)\,2}(top \to \tau\nu b) \left[1 + \frac{BR^{(MC)}(top \to \tau, nu, b) - BR^{(fit)}(top \to \tau\nu b)}{1 - BR^{5M}(top \to I\nu b)}\right]}$$

•
$$N^{\tau I} = N^{\tau I(MC)} \frac{BR^{(fit)}(top \to \tau\nu b)}{BR^{(MC)}(top \to \tau\nu b)}$$

•••

æ


(日) (日) (日) (日) (日)

Scaling

•
$$N^{\tau\tau} = N^{\tau\tau(MC)} \frac{BR^{(ft)\,2}(top \to \tau\nu b)}{BR^{(MC)\,2}(top \to \tau\nu b) \left[1 - BR^{(ft)}(top \to \tau\nu b) + BR^{(MC)}(top \to \tau\nu)\right]}$$

• $N^{\tau I} = N^{\tau I(MC)} \frac{BR^{(ft)}(top \to \tau\nu b)}{BR^{(MC)}(top \to \tau\nu b)}$

95% CL limit for $BR(top \rightarrow H^+b)$

- $BR(top \rightarrow H^+b)$ is negative (0.017)
- Feldman-Cousins method to find 95% CL
- BR(top → H⁺b) < 0.061 at 95% CL

Electron Identification Selection

Standard CDF requirements for electron identification selection

Variable	Requirement
Region	CEM
Fiducial	SMX Fiducial
E_T	$\geq 10 { m GeV}$
Track p_T	$\geq 8~{ m GeV}/c$
Track z_0	$\leq 60~{ m cm}$
COT AxSL	≥ 3
COT StSL	≥ 2
Conversion	veto
E_{HAD}/E_{EM}	$\leq (0.055+0.00045 imes E)$
Isolation	≤ 0.1
Lshr	≤ 0.2
E/P	$\leq 4.0 \text{ or } p_T \geq 50 \text{ GeV}/c$
CES ΔZ	$\leq 3.0~{ m cm}$
CES $q\Delta X$	$-3.0 \leq q \Delta X \leq 1.5~{ m cm}$
CES Strip χ^2	≤ 10.0

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三回 のへの

Muon Identification Selection

Standard CDF requirements for electron identification selection

Variable	Requirement
p_T	$> 10 { m GeV}$
$ z_0 $	$> 60 { m cm}$
$ d_0^{corr} $	$<0.2\mathrm{cm}$
E_{rel}^{iso}	$< 0.1 ~({ m if}~ p_T \ge 20.)$
E_T^{iso}	$<$ 2.0 GeV (if $p_T \leq$ 20.)
COT AxSL	≥ 3
COT StSL	≥ 2
ρ_{COT}	$> 140~{ m cm}$

Requirements for electron identification selection

Variable	Requirement, $p_T > 20$ GeV	Requirement, $p_T < 20$ GeV
E_{EM}	(2 + max(0, 0.0115 * (p - 100))) GeV	$2 \mathrm{GeV}$
E_{HAD}	6 + max(0, 0.028 * (p - 100)) GeV	$3.5 + (p_T/8.0)$ GeV
Δ_{CMU} (CMUP muon)	$< 3 { m cm}$	$< 3~{ m cm}$ or $\chi^2_{CMU} < 9.0$
Δ_{CMP} (CMUP muon)	$< 7 { m cm}$	$< 7 \ { m cm}$ or $\chi^2_{CMP} < 9.0$
$ \Delta_{CMX} $ (CMX muon)	$< 6 { m cm}$	< 6 cm or χ^{2}_{CMX} < 9.0

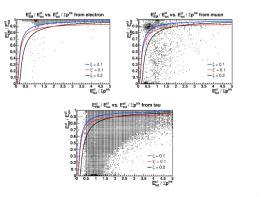
Minimum Ionizing Particles Identification Selection

Requirements MIP identification selection

Variable	Requirement, $p_T > 20$ GeV	Requirement, $p_T < 20 \text{ GeV}$
E_{EM}	$<2+max(0, \ 0.0115*(p-100)) { m ~GeV}$	$< 2 { m GeV}$
E_{HAD}	$< 6 + max(0, \ 0.028*(p-100)) { m ~GeV}$	$< 3.5 + (p_T/8.0)~{ m GeV}$
$\sum p_T^{iso}$	$< 4 { m ~GeV}$	$< 4 { m GeV}$
E_{rel}^{iso}	< 0.2	_
E_T^{iso}	_	$< 4.0~{ m GeV}$

Tau Identification Selection

Tau Identification Requirements

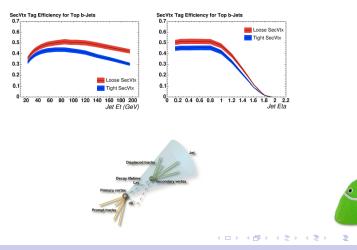

Variable	Requirement
$E_T^{SeedTwr}$	$\geq 6.0 \text{ GeV}$
$p_T^{SeedTrk}$	≥ 6.0 geV or ≥ 8.0 GeV when selecting muon candidates
$\hat{E}_{T}^{Cluster}$	≥ 10.0 GeV for 1 prong taus or ≥ 15.0 GeV for 3 prong taus
p_T^{Vis}	$\geq 15.0 \text{ GeV}/c$ for 1 prong taus or $\geq 20.0 \text{ GeV}/c$ for 3 prong taus
$ Z_{CES} $	$9 \leq \mid Z_{CES} \mid \leq 230 \text{ cm}$
Σp_T^{iso}	$\leq 2.0 { m ~GeV}$
$\Sigma E_T^{\pi^0 iso}$	$\leq 1.0 { m ~GeV}$
p_T^{iso}	$\leq 1.5 \text{ GeV}$
COT Ax. Seg.	≥ 3
COT St. Seg.	≥ 2
E_T^{shtwr}	$\geq 1.0 { m GeV}$
N^{twr}	≤ 6
θ_{sig}	$min(0.17, \frac{5.0}{E^{Cluster}[GeV]})$ rad
ξ'	≤ 0.1
E_{tot}/p	≥ 0.4
M^{vis}	$\leq 1.8~{ m GeV}$
$N^{\pi^0 iso}$	$- \leq 0$
N^{trk}	=1,3
Charge	± 1
$d_0^{seedtrk}$	0.2 cm

æ

Tau Identification Selection

$$\xi' = \frac{E_{tot}}{\Sigma \mid \vec{p_i} \mid} \left(0.95 - \frac{E_{EM}}{E_{tot}} \right)$$

$$\xi = \frac{E_{had}}{\Sigma \mid \vec{p_i} \mid} = \frac{E_{tot}}{\Sigma \mid \vec{p} \mid} \left(1 - \frac{E_{EM}}{E_{tot}}\right)$$



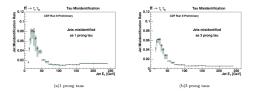
◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

SecVtx b Quark Tagging Efficiency

b quark tagging efficiency using tight or loose SecVtx tagger

Monte Carlo Samples

Process	Inst. Lum.	Gen.	N. Events	σ_{prod}
$Z/\gamma^* \rightarrow \tau \tau + 0$ p $M_Z = [20, 75]$ GeV	Low Lum.	Alpgen	1'236'000	224 pb^{-1}
$Z/\gamma^* \rightarrow \tau \tau + 1 p M_Z = [20, 75] \text{ GeV}$	Low Lum.	Alpgen	1'159'000	12 pb^{-1}
$Z/\gamma^* \rightarrow \tau \tau + (\geq 2p) M_Z = [20, 75] \text{ GeV}$	Low Lum.	Alpgen	2'270'000	2.5 pb^{-1}
$Z/\gamma^* \rightarrow \tau \tau + 0 p M_Z = [75, 105] \text{ GeV}$	Low Lum.	Alpgen	5'860'000	221 pb ⁻¹
$Z/\gamma^* \rightarrow \tau \tau + 1 p M_Z = [75, 105] \text{ GeV}$	Low Lum.	Alpgen	5'723'000	30 pb ⁻¹
$Z/\gamma^* \rightarrow \tau \tau + (\geq 2p) M_Z = [75, 105] \text{ GeV}$	Low Lum.	Alpgen	2'263'000	5.8 pb^{-1}
$Z/\gamma^* \rightarrow \tau \tau + 0 \text{p} \ M_Z = [20, 75] \text{ GeV}$	High Lum.	Alpgen	400'000	224 pb ⁻¹
$Z/\gamma^* \rightarrow \tau \tau + 1 p M_Z = [20, 75] \text{ GeV}$	High Lum.	Alpgen	400'000	12 pb ⁻¹
$Z/\gamma^* \rightarrow \tau \tau + (\geq 2p) M_Z = [20, 75] \text{ GeV}$	High Lum.	Alpgen	800'000	2.5 pb^{-1}
$Z/\gamma^* \rightarrow \tau \tau + 0 p M_Z = [75, 105] \text{ GeV}$	High Lum.	Alpgen	2'401'000	221 pb ⁻¹
$Z/\gamma^* \rightarrow \tau \tau + 1 p M_Z = [75, 105] \text{ GeV}$	High Lum.	Alpgen	2'401'000	30 pb ⁻¹
$Z/\gamma^* \rightarrow \tau \tau + (\geq 2p) M_Z = [75, 105] \text{ GeV}$	High Lum.	Alpgen	953'000	5.8 pb ⁻¹
WW	Low Lum.	PYTHIA	1'095'000	11.3 pb ⁻¹
WZ	Low Lum.	PYTHIA	1'083'000	3.2 pb^{-1}
ZZ	Low Lum.	PYTHIA	1'090'000	3.6 pb ⁻¹
WW	High Lum.	PYTHIA	1'100'000	11.3 pb ⁻¹
WZ	High Lum.	PYTHIA	1'102'000	3.2 pb ⁻¹
ZZ	High Lum.	PYTHIA	1'102'000	3.6 pb ⁻¹


Monte Carlo Samples

Process	Inst. Lum.	Gen.	N. Events	σ_{prod}
$Z/\gamma^* \rightarrow \mu\mu + 0 \text{p} M_Z = [75, 105] \text{ GeV}$	Low Lum.	Alpgen	2'659'000	221 pb^{-1}
		10		
$Z/\gamma^* \rightarrow \mu\mu + 1 \text{p} \ M_Z = [75, 105] \text{ GeV}$	Low Lum.	Alpgen	2'652''000	30 pb ⁻¹
$Z/\gamma^* \rightarrow \mu\mu + 2p \ M_Z = [75, 105] \ \text{GeV}$	Low Lum.	Alpgen	4'660'000	4.8 pb^{-1}
$Z/\gamma^* \rightarrow \mu\mu + 3p \ M_Z = [75, 105] \ \text{GeV}$	Low Lum.	Alpgen	536'000	0.77 pb^{-1}
$Z/\gamma^* \rightarrow \mu\mu + (\geq 4p) M_Z = [75, 105] \text{ GeV}$	Low Lum.	Alpgen	530'000	0.14 pb^{-1}
$Z/\gamma^* \rightarrow ee + 0p \ M_Z = [75, 105] \text{ GeV}$	Low Lum.	Alpgen	2'639'000	221 pb ⁻¹
$Z/\gamma^* \rightarrow ee + 1p \ M_Z = [75, 105] \text{ GeV}$	Low Lum.	Alpgen	2'625'000	30 pb ⁻¹
$Z/\gamma^* \rightarrow ee + 2p \ M_Z = [75, 105] \text{ GeV}$	Low Lum.	Alpgen	536'000	4.8 pb^{-1}
$Z/\gamma^* \rightarrow ee + 3p M_Z = [75, 105] \text{ GeV}$	Low Lum.	Alpgen	524'000	0.77 pb^{-1}
$Z/\gamma^* \rightarrow ee + (\geq 4p) M_Z = [75, 105] \text{ GeV}$	Low Lum.	Alpgen	525'000	0.14 pb^{-1}
$Z/\gamma^* \rightarrow \mu\mu + 0$ p $M_Z = [75, 105]$ GeV	High Lum.	Alpgen	1'020'000	221 pb ⁻¹
$Z/\gamma^* \rightarrow \mu\mu + 1p \ M_Z = [75, 105] \text{ GeV}$	High Lum.	Alpgen	1'021'000	30 pb^{-1}
$Z/\gamma^* \rightarrow \mu\mu + 2p M_Z = [75, 105] \text{ GeV}$	High Lum.	Alpgen	1'793'000	4.8 pb^{-1}
$Z/\gamma^* \rightarrow \mu\mu + 3p M_Z = [75, 105] \text{ GeV}$	Low Lum.	Alpgen	192'000	0.77 pb^{-1}
$Z/\gamma^* \rightarrow \mu\mu + (\geq 4p) M_Z = [75, 105] \text{ GeV}$	Low Lum.	Alpgen	192'000	0.14 pb^{-1}
$Z/\gamma^* \rightarrow ee + 0p \ M_Z = [75, 105] \text{ GeV}$	High Lum.	Alpgen	1'024'000	221 pb ⁻¹
$Z/\gamma^* \rightarrow ee + 1p \ M_Z = [75, 105] \text{ GeV}$	High Lum.	Alpgen	1'024'000	30 pb ⁻¹
$Z/\gamma^* \rightarrow ee + 2p \ M_Z = [75, 105] \text{ GeV}$	High Lum.	Alpgen	1'793'000	4.8 pb^{-1}
$Z/\gamma^* \rightarrow ee + 3p \ M_Z = [75, 105] \text{ GeV}$	Low Lum.	Alpgen	192,000	0.77 pb ⁻¹
$Z/\gamma^* \rightarrow ee + (\geq 4p) M_Z = [75, 105] \text{ GeV}$	Low Lum.	Alpgen	192'000	0.14 pb^{-1}

Tau Fake Rate

Variable	Tau ID
$p_T^{SeedTrk}$	$\geq 6.0~{\rm geV}$ or $\geq 8.0~{\rm GeV}$ when selecting muon candidates
$E_T^{Cluster}$	≥ 10.0 GeV for 1 prong taus or ≥ 15.0 GeV for 3 prong ones
Z^{CES}	$9 \leq Z^{CES} \leq 230 \text{ cm}$
E_T^{ShTwr}	$\geq 1.0 \text{ GeV}$
\hat{N}^{Twr}	≤ 6
ξ'	≤ 0.1
E/P	≥ 0.4

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Systematics

Summary of the systematic uncertainties

Process	$Z/\gamma^* \to \tau \tau$	$Z/\gamma^* \rightarrow ll$	Diboson	$t\bar{t} \to \tau l + X$	$t\bar{t} \to \tau\tau + X$	Fakes
Trigger	$\pm 3\%$	±3%	$\pm 3\%$	$\pm 3\%$		$\pm 3\%$
Cross Section	$\pm 15\%$	$\pm 15\%$	$\pm 6\%$	-	-	_
PDF	_	-	-	$\pm 0.5\%$	$\pm 0.5\%$	-
Showering	_	-	-	$\pm 3\%$	$\pm 3\%$	_
Color Recon.	-	-	-	$\pm 4\%$	$\pm 4\%$	-
ISR/FSR	_	-	-	$\pm 9\%$	$\pm 9\%$	-
Pile Up	_	-	-	$\pm 2.5\%$	$\pm 3\%$	_
JEC	$\pm 9\%$	$\pm 20\%$	$\pm 20\%$	$\pm 2\%$	$\pm 3\%$	_
$\tau E_{\rm T} scale$	$\pm 4\%$	$\pm 20\%$	$\pm 20\%$	$\pm 0.5\%$	$\pm 1.5\%$	-
$\tau ID scale$	$\pm 3\%$	-	$\pm 3\%$	$\pm 3\%$	$\pm 3\%$	-
SECVTX Tag	$\pm 5\%$	$\pm 5\%$	$\pm 5\%$	$\pm 5\%$	$\pm 5\%$	_
SECVTX Mistag	$\pm 20\%$	$\pm 20\%$	$\pm 20\%$	-		_
Fake Rate	-	-	-	-	-	$^{+7\%}_{-20\%}$

Fine Backup

