Testing of the new VIPIC chip for X-photon counting applications

Intern: Pietro Peronio ¹
Supervisor: Grzegorz W. Deptuch ²

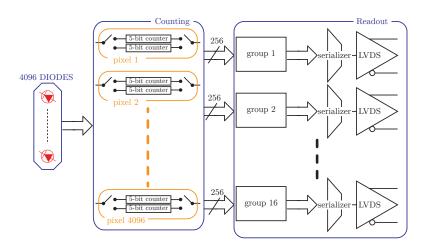
 1 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy

 $^2\mathsf{Particle}$ Physics Division ASIC Development group, Fermilab, Illinois, USA

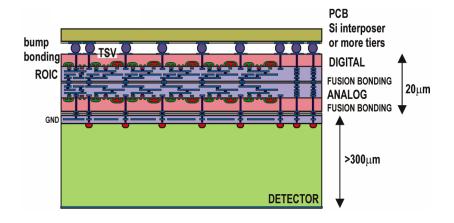
September 24th, 2014

Summary

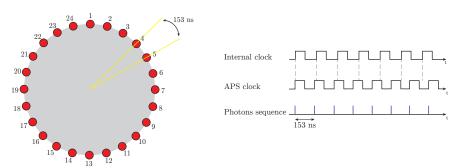
- Introduction
- Preliminary analyses
- Autocorrelation analyses
- Future developments


Training program

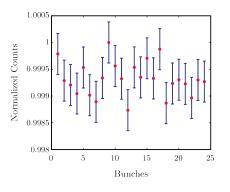
The intern will be involved in the testing process of a new kind of readout circuit (VIPIC chip) designed in a novel 3D-IC technology by the Fermilab Application Specific Integrated Circuit (ASIC) Development group

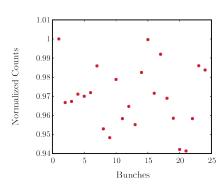

Tasks

- The intern will learn the structure and the working principle of the new Vertically Integrated Photon Imaging Chip (VIPIC)
- The intern will develop Matlab code in order to do in depth analyses of the data acquired with the VIPIC chip at the Argonne National Laboratory (ANL) Synchrotron
- By means of the analyses the intern will infere if the chip is working correctly and so will help the ASIC group in it's improvement
- After the basic analyses the intern will collaborate with ANL researchers in order to perform the X-Ray Photon Correlation Spectroscopy (XPCS) using the acquired data

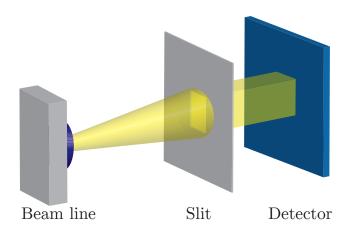

VIPIC basic block scheme

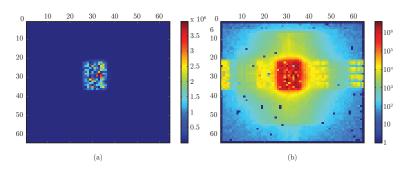
VIPIC 3D structure




Working principle

Electrons and photons are sorted in 24 bunches. In order to correctly sort them it is mandatory to have a correct triggering mechanism


Module 24 analysis



Using the APS clock photons are correctly sorted in the bunches

Direct beam operating condition

Matrix counts

Remark

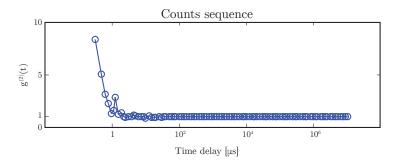
Moving further from the center of the slit the light intensity is decreasing whereas some pixel on both left and right borders seems to slightly increase their counts

Problem found in pixel counts

Each pixel is connected to a counter Counters are reset after being readout During the analysis it was found that some counters have a valur bigger than one. This is not consistent with physics

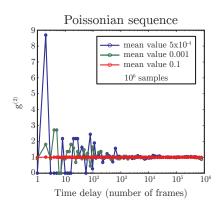
Cause

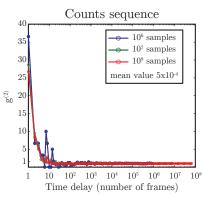
Only counters that have been readout are forced to reset. The other ones keep on counting. This is a problem if the number of hits per frame is too high. By means of this analysis a new reset mechanism will be designed in other to avoid that problem.


Autocorrelation software

Matlab code provided by ANL's researchers

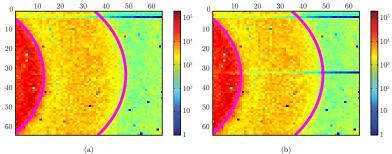
$$g^{(2)}(p_i, \tau) = \frac{\langle I(p_i, t) \cdot I(p_i, t + \tau) \rangle_t}{\langle I(p_i, t) \rangle_t^2}$$


11 / 16


Autocorrelation - Direct beam

$$g^{(2)}(p_i, m) = \begin{cases} 1 & \text{if } m > 0 \\ 1 + \frac{1}{\mu} & \text{if } m = 0 \end{cases}$$

Direct beam

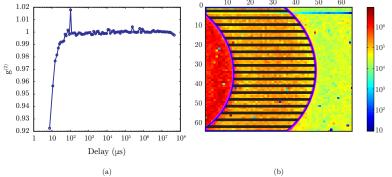

Conclusions

The bouncing at short time delays seems to be due to the finite lenght of the counts sequence

Colloid data

Data collected illuminating a colloid sample and collecting photons coming from it.

During the analysis it was found that some data have a wrong header



Conclusions

The problem is related only to a specific readout group. Only the header seems to be corrupted

$g^{(2)}$ – Central anular ring

 $g^{(2)}$ was calculated and averaged on an area with quite uniform illumination. The shape is still poissonian increasing the number of frames.

Conclusions

 $g^{(2)}$ needs to be averaged on a smaller area in order not to change statistics

Next steps

- The autocorrelation analyses will be done on all the files acquired at ANI
- These analyses will help the designers team to debug errors
- A new VIPIC chip meant to be connected to a 1 million pixels matrix will be designed