Magnetic field measurement system based on rotating PCB coils

Author: **Gianluca Nicosia** *Politecnico di Milano* Supervisor: **Joseph DiMarco** *Fermilab TD*

September 24, 2014

POLITECNICO DI MILANO

Section 1

INTRODUCTION

AIM OF THE INTERNSHIP

Developing a magnetic field measurement system in LabVIEW and MATLAB implementing preexisting scripts and using it to analyze the performances of rotating PCB coils comparing them to more traditional machine-winded harmonic coils.

ROTATING COIL IN MAGNETIC FIELD

The system is based on Faraday's Law:

$$\mathcal{E} = -\frac{d\phi}{dt} = -\frac{d}{dt} \iint_{A} \mathbf{B} \cdot \mathbf{n} dA =$$
(1)

$$\underbrace{-\iint_{A} \frac{d\mathbf{B}}{dt} \cdot \mathbf{n} dA}_{\text{Time-varying field}} \underbrace{-\iint_{\partial A} \mathbf{v} \times \mathbf{B} dl}_{\text{Displacement or deformation of the coil}}$$
(2)

If the geometry and the position of the coil are known, integrating the voltage, the flux is obtained.

$$\Phi - \Phi_0 = -\int_0^t \mathcal{E} \mathrm{d}t \tag{3}$$

The field harmonics (multipoles) are derived using knowledge of the coil geometry.

HARMONIC DECOMPOSITION

Let's consider a region of space free of charges and current.

$$\nabla \cdot \mathbf{B} = 0 \tag{4}$$

$$\nabla \times \mathbf{B} = 0 \tag{5}$$

A magnetic field $\mathbf{B} = (B_x, B_y, B_z)$ with B_z constant and the other two components given by

$$B_y + iB_x = \overline{C_n}(x + iy)^{n-1} = \overline{C_n}z^{n-1} \quad \overline{C_n} \in \mathbb{C}, n \in \mathbb{N}$$
 (6)
satisfies 4 and 5

INTRODUCTION	SET-UP AND NOISE ANALYSIS	HARMONIC ANALYSIS	To Do
00000	0000000000000	0000	

HARMONIC DECOMPOSITION

A generic field is given by

$$B_y + iB_x = \sum_{n=1}^{\infty} C_n \left(\frac{z}{R_r}\right)^{n-1}$$
(7)

Harmonics can be easily measured starting form the flux

$$\Phi(\theta) = Re\left(\sum_{n=1} C_n K_n e^{in\theta}\right)$$
(8)

 K_n is the winding sensitivity and is defined as:

$$K_n = \sum_{j=1}^{N_{wires}} \frac{L_j R_r}{n} \left(\frac{x_j + iy_j}{R_r}\right)^n (-1)^j \tag{9}$$

Flux Fourier coefficients F_n

$$C_n = \frac{F_n}{K_n} \tag{10}$$

INTRODUCTION	SET-UP AND NOISE ANALYSIS	HARMONIC ANALYSIS 0000	To Do

BUCKING

To accurately measure higher order harmonics it is necessary to connect the coils in such a fashion as to suppress the signal of the main field component. This will consequently suppress spurious harmonics due to coil vibrations. This technique is called *bucking*.

Section 2

Set-UP and noise analysis

INTRODUCTION 00000 SET-UP AND NOISE ANALYSIS

HARMONIC ANALYSIS

WORKING BENCH

INTRODUCTION 00000 Set-UP and noise analysis 0000000000000 HARMONIC ANALYSIS

Morgan Probe

INTRODUCTION	
00000	

DAQ (PXI-4462)

- ► Maximum sampling frequency: 204.8*k*Hz
- Differential inputs
- ► ADC resolution: 24*bit*
- Input dynamic range set to $\pm 0.316 \text{ V} \longrightarrow 30 \text{ dB}$ gain
- Input resistance: $1 M\Omega$

$$LSB = \Delta = \frac{0.316 \,\mathrm{V} \times 2}{2^{24}} \approx 37.67 \,\mathrm{nV}$$

Quantization noise:

$$\sigma = rac{\Delta}{\sqrt{12}} pprox 10.87 \,\mathrm{nV}$$

Not infinite input resistance leads to signal loss of

$$\begin{split} PCB &\approx 1 - \frac{1\,\mathrm{M}\Omega}{10\,\mathrm{k}\Omega + 1\,\mathrm{M}\Omega} \approx 1\%\\ Morgan &\approx 1 - \frac{1\,\mathrm{M}\Omega}{10\,\Omega + 1\,\mathrm{M}\Omega} \approx \epsilon \end{split}$$

Introduction	SET-UP AND NOISE ANALYSIS	HARMONIC ANALYSIS	To Do
00000	000000000000000000000000000000000000000	0000	

DAQ NOISE

Channel	Mean [µV]			Stand	dard deviation [µV]		
AI0	-10.24	-11.24	-12.04	0.39	0.44	0.46	
AI1	5.42	5.35	5.34	0.35	0.36	0.36	
AI2	0.57	0.87	0.53	0.39	0.38	0.44	
AI3	4.63	4.64	4.64	7.18	7.12	7.08	

Figure 2 : AI0 Noise Spectrum

- PCB probe 5 signals: Unbucked (UB), Dipole Bucked (DB), Dipole Quadrupole Bucked (DQB), Dipole Quadrupole Sextupole Bucked (DQSB) and Unbucked Low Gain (UBL)
- ► Morgan probe 6 signals: Dipole (2P1), Quadrupole (4P1), Sextupole (6P1), Decapole (10P1) and Dodecapole (12P1) sensitive
- Rotary encoder 2 signals: index and encoder pulses

To Do

SET-UP AND NOISE ANALYSIS

HARMONIC ANALYSIS

MORGAN PROBE PROPER NOISE

PROBE NOISE COMPARISON

White noise level appears to be almost almost the same in both probes.

- ► **DAQ**: $\sqrt{S_f} \approx 1 \frac{nV}{\sqrt{Hz}}$
- **UB**: $\sqrt{S_f} = \sqrt{4kTR_{coil}} \approx \sqrt{4kT \times 1 k\Omega} \approx 4 \frac{nV}{\sqrt{Hz}}$ difficult to see on a log graph.
- ► **DQB**: $\sqrt{S_f} = \sqrt{4kTR_{coil}} \approx \sqrt{4kT \times 4.5 \text{ k}\Omega} \approx 8.5 \frac{nV}{\sqrt{Hz}}$ slight increase visible
- 2P1 and 12p1: resistance in the order of few Ω. Thermal noise negligible with respect to DAQ noise

Conclusion: PCB coils are slightly noisier than Morgan coils.

00000 000000000000 00000	INTRODUCTION	SET-UP AND NOISE ANALYSIS	HARMONIC ANALYSIS
	00000	0000000000000	0000

STEPPER MOTOR

Probes are spun using a stepper motor. This kind of actuators are quite noisy.

Noise raised from $\sqrt{S_f} \approx 1 \frac{nV}{\sqrt{Hz}}$, to $\sqrt{S_f} \approx 1 \frac{\mu V}{\sqrt{Hz}}$. No relation with the spinning frequency was found.

To Do

STEPPER MOTOR

Power spectra obtained spinning the probe manually confirm that the stepper motor is a dominant source of noise

POWER SUPPLY

Magnets were powered using a Kepco BOP 36-12M DC bipolar power supply. Random fluctuations of the current generated by it can increase the uncertainty of the measures.

Figure 7 : UB coil. Power supply on

MAGNETS

Two magnets were employed to test the probes:

- ► **Dipole magnet**: $10 \text{ A} \rightarrow C_1 \approx 71 \text{ mT}$ $R_{ref} = 10 \text{ mm}$
- **Quadrupole magnet**: $5 \text{ A} \rightarrow C_2 \approx 2 \text{ mT}$ $R_{ref} = 10 \text{ mm}$

INTRODUCTION	
00000	

LABVIEW VI

Fluxes displayed after each turn. Harmonic analysis performed at the end of data acquisition.

INTRODUCTION	
00000	

LABVIEW VI

INTRODUCTION	
00000	

LABVIEW VI

Section 3

HARMONIC ANALYSIS

DIPOLE MAGNET: HARMONICS

Dipole harmonics comparison: normal component B_n and skew component A_n . Error as $\pm \sigma$

SET-UP AND NOISE ANALYSIS

HARMONIC ANALYSIS

DIPOLE MAGNET: HARMONICS

Dipole harmonics comparison: normal component B_n and skew component A_n . Error as $\pm \sigma$

DIPOLE MAGNET: RELATIVE ERROR

Relative error defined as

$$\epsilon = \frac{\sigma_{C_n}}{|C_n|}$$

Signal	f	2	3	4	5	6
	1 Hz	0.96	66.40×10^{-3}	2.1529	0.38	15.30
Morgan	2 Hz	0.28	26.44×10^{-3}	0.55	0.15	5.32
	4 Hz	0.11	11.71×10^{-3}	0.23	63.43×10^{-3}	0.57
	1 Hz	0.28	0.14	3.38	0.95	7.16
UB	2 Hz	0.39	0.18	2.94	1.52	8.01
	4 Hz	0.75	0.37	5.69	3.21	8.85
	1 Hz	0.12	8.1724×10^{-3}	0.21	45.17×10^{-3}	0.92
DB	2 Hz	35.04×10^{-3}	2.17×10^{-3}	62.37×10^{-3}	11.16×10^{-3}	0.27
	4 Hz	31.315×10^{-3}	1.83×10^{-3}	84.86×10^{-3}	16.15×10^{-3}	0.28
	1 Hz	0.12	15.89×10^{-3}	0.21	62.40×10^{-3}	1.18
DQB	2 Hz	35.04×10^{-3}	5.47×10^{-3}	0.11	21.441×10^{-3}	0.43
	4 Hz	31.315×10^{-3}	9.04×10^{-3}	0.21	50.70×10^{-3}	0.90
	1 Hz	0.12	15.89×10^{-3}	0.64	0.14	2.92
DQSB	2 Hz	35.04×10^{-3}	5.47×10^{-3}	0.44	77.05×10^{-3}	1.28
	4 Hz	31.315×10^{-3}	9.04×10^{-3}	0.92	0.19	3.26
	1 Hz	0.31	0.15	3.35	1.05	5.21
UBL	2 Hz	0.40	0.17	3.18	1.50	7.56
	4 Hz	0.75	0.36	6.27	3.15	8.73

INTRODUCTION 00000

DIPOLE MAGNET: ABSOLUTE ERROR

Standard deviation value σ_{C_n} in milliunits. Dipole magnet

Signal	f	2	3	4	5	6
	1 Hz	942.79	313.68	147.84	60.925	47.62
Morgan	2 Hz	302.1769	127.94	48.68	24.47	16.56
-	4 Hz	118.72	56.38	20.29	10.01	5.80
	1 Hz	1639.4	722.62	343.60	169.56	97.81
UB	2 Hz	2192.6	941.77	461.47	242.49	130.27
	4 Hz	4347.6	1918.8	972.95	541.37	320.75
	1 Hz	91.46	36.64	12.31	7.06	4.32
DB	2 Hz	27.64	9.71	3.49	1.75	1.48
	4 Hz	24.50	8.20	4.72	2.57	1.52
	1 Hz	91.46	70.71	17.06	9.62	5.36
DQB	2 Hz	27.64	24.31	8.52	3.33	2.29
	4 Hz	24.50	40.10	16.49	7.97	4.77
	1 Hz	91.46	70.71	56.22	20.55	10.01
DQSB	2 Hz	27.64	24.31	35.22	11.70	6.05
	4 Hz	24.50	40.10	77.58	30.37	14.66
	1 Hz	1840.0	775.48	354.72	165.92	90.27
UBL	2 Hz	2234.9	922.66	446.30	237.70	123.91
	4 Hz	4312.0	1885.3	944.94	518.58	302.56

The PCB probe performs better than the Morgan one

To Do

INTRODUCTION

- Perform harmonic analysis on quadrupole magnet: a lot of problems arose when this analysis was performed.
- Repeat measures using a less noisy motor
- Understand the reason for differences in values of not allowed harmonics measured by the two probes
- ► Perform comparison using a preamplified PCB probe
- ► PCB probe behavior with ramping field