| Training program | Introduction | Preliminary analysis | Final geometry | Conclusions |
|------------------|--------------|----------------------|----------------|-------------|
| O                | 000          | 00                   |                | O           |
|                  |              |                      |                |             |



### FERMI NATIONAL ACCELERATOR LABORATORY Mu2e: muon-to-electron conversion experiment 14 august 2014

# Optimization of the T-Tracker Detector Mechanical Structure for Mu2e

Enrico Beghini

Fermi National Accelerator Laboratory

| Training program | Introduction | Preliminary analysis | Final geometry | Conclusions |
|------------------|--------------|----------------------|----------------|-------------|
| O                | 000          | 00                   | 00000000       | O           |
| Contents         |              |                      |                |             |

## 1 Training program

### 2 Introduction

- 3 Preliminary analysis
  - Analytical model
  - FEM analysis
- 4 Final geometry
  - Drawings
  - FEM analysis

## 5 Conclusions

| Training program | Introduction | Preliminary analysis | Final geometry | Conclusions |
|------------------|--------------|----------------------|----------------|-------------|
| ●                | 000          | 00                   | 00000000       | O           |
| Training pro     | gram         |                      |                |             |

### Training program

- Assist with the optimization of the panel design of the T-tracker.
- Support the advanced design of the T-tracker structure.
- Assist in the development of conceptual designs related to the panel installation activities.

## Specifications

• The maximum vertical displacement of the T-tracker frame,  $\delta_y$ , should be less than 1.00 mm.

| Training program | Introduction | Preliminary analysis | Final geometry | Conclusions |
|------------------|--------------|----------------------|----------------|-------------|
| O                | •••          | 00                   | 00000000       | O           |
| The T-Track      | ker          |                      |                |             |



## The T-Tracker

- Part of the Mu2e experiment.
- Tracker composed by 20 stations.
- The stations have to be supported by a frame.

| Training program | Introduction | Preliminary analysis | Final geometry | Conclusions |
|------------------|--------------|----------------------|----------------|-------------|
| O                | ○●○          | 00                   | 00000000       | O           |
| The frame        |              |                      |                |             |



## The frame

- Only load: stations weight.
- Supports: four bearing blocks on rings.
- Frame composed by six different parts.



## Load analysis



### The weight

- Every station is composed by 12 panels.
- Weight of a panel:  $m_{panel} = 6.7 \text{ kg}$ .
- Weight of the whole Tracker:  $m_{tot} = 1.74 \cdot 10^3 \text{ kg}.$





### Analytical model

- Bottom staves modeled as one beam.
- Load p: linear distribution of Tracker's and frame's weight.

• Vertical displacement: 
$$\delta_y = \frac{5}{384} \frac{pL_{block}^4}{E_{Al}J_x}$$
.

Enrico Beghini

| Training program<br>O | Introduction<br>000                                                                                                                                    | Preliminary analysis<br>○●                                                                                                                          | Final geometry<br>00000000 | Conclusions<br>0 |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|
| FEM analysis          |                                                                                                                                                        |                                                                                                                                                     |                            |                  |
|                       | A: Static Structural<br>Deformazione y<br>Type: Directional Deformation(Y Axis)<br>Unit: mm<br>Global Coordinate System<br>Time: 1<br>9/5/2014 5-47 PM | A: Static Structural<br>Deformazione X<br>Type: Directional Deformation(X Axis)<br>Unit: mm<br>Characteristic System<br>Time: 1<br>9/5/2014 5:49 PM |                            |                  |

0.0085 Max

0.0019

-0.0014

-0.004

-0.008

-0.011

-0.015

-0.018

-0.021

-0.025

-0.028

-0.034 -0.038 Mir



- Simplified geometry of stations.
- Frame made from Aluminum.

0 Max

-0.023

-0.031

-0.039

-0.046

-0.054

-0.062

-0.069

-0.077

-0.085

-0.093 -0.1 -0.11 Min

-0.0077

• Maximum vertical displacement:  $\delta_y = 110 \,\mu\text{m}$ .



### FEM analysis

- New geometry in order to have less costs of production.
- Milled surfaces on the rings used as references surfaces.
- Mechanical drawings given to machine shops to have an estimate of costs.

#### Enrico Beghini

Fermi National Accelerator Laboratory

| Training program | Introduction | Preliminary analysis | Final geometry | Conclusions |
|------------------|--------------|----------------------|----------------|-------------|
|                  |              |                      | 0000000        |             |
|                  |              |                      |                |             |

## Upstream ring



#### Enrico Beghini

Fermi National Accelerator Laboratory

| Training program | Introduction | Preliminary analysis | Final geometry | Conclusions |
|------------------|--------------|----------------------|----------------|-------------|
| O                | 000          | 00                   | ○○●○○○○○       | 0           |
|                  |              |                      |                |             |

## Downstream ring 1



#### Enrico Beghini

Fermi National Accelerator Laboratory

| Training program | Introduction | Preliminary analysis | Final geometry | Conclusions |
|------------------|--------------|----------------------|----------------|-------------|
| 0                | 000          | 00                   | ○○○●○○○○       | 0           |
| D                |              |                      |                |             |

## Downstream ring 2



#### Enrico Beghini

Fermi National Accelerator Laboratory

| Training program | Introduction | Preliminary analysis | Final geometry | Conclusions |
|------------------|--------------|----------------------|----------------|-------------|
|                  |              |                      | 0000000        |             |
|                  |              |                      |                |             |

## Top stave



#### Enrico Beghini

Fermi National Accelerator Laboratory



## Bottom stave right



#### Enrico Beghini

Fermi National Accelerator Laboratory



## Bottom stave left



#### Enrico Beghini

Fermi National Accelerator Laboratory



### Final FEM analysis

- Maximum vertical displacement:  $\delta_y = 120 \,\mu\text{m}$ .
- The maximum displacement follows the specification.
- There is still the possibility to reduce the section of the staves.

| Training program | Introduction | Preliminary analysis | Final geometry | Conclusions |
|------------------|--------------|----------------------|----------------|-------------|
| O                | 000          | 00                   | 00000000       | •           |
| Conclusions      |              |                      |                |             |

### Conclusions and next steps

- Has been realized the structural analysis of the frame.
- Has been studied the technological feasibility of every part of the frame.
- The drawings have been delivered to the machine shop for an estimate of the costs.
- It will be necessary to design of the production of the prototype of the frame.