◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

W charge asymmetry at CDF

Andrea Isgrò

Italian Summer Student program @ Fermilab

September 24, 2014

Plan of presentation

1 Introduction and summary of the first part

2 New PDF set: cteq6l

3 Selection cuts

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

W charge asymmetry at CDF

Introduction and summary of the first part

W^+ production and decay

$$\Delta \mathcal{L} = \frac{g_W}{2\sqrt{2}} W^+_\mu \left(\cos\theta_c \overline{\psi}_u \gamma^\mu (1-\gamma^5) \psi_d + \overline{\psi}_{\nu_e} \gamma^\mu (1-\gamma^5) \psi_e \right)$$

- u PDF greater than \bar{d}
- on average p₁ > p₂ ⇒ W⁺ prefers the p direction
- $\bullet \ W^- \ {\rm prefers} \ \bar{p} \ {\rm direction}$

Decay

(Pseudo-)rapidity distributions are asymmetric

How to discriminate real e from background?

- $E_T > 25$ GeV, to stay away from jets
- Had/Em < 0.055 Hadron vs Em Calorimeter energy
- E_{iso} : energy within a $\eta \phi$ cone (needs to be small)
- Multiple *e* objects for the same event?

Conclusion of first part

- Some signal $(E_T, \not\!\!E_T)$, but still too many events promoted
- Removed $Z \to e^+e^-$: cut on $2^{nd}/3^{rd}$ electron $E_T > 15 \text{ GeV} \checkmark$

- Upgrade MC: new PDF set (cteq5l \rightarrow cteq6l) \checkmark
- Additional cuts needed...

Theory expectations: cteq5l (1999) vs cteq6l (2002)

W⁺/W⁻ Rapidity (theory)

6/15

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のんで

Theory expectations: cteq5l (1999) vs cteq6l (2002)

- cross check: the new CDF master script (almost) works
- no significant discrepancies, but some small differences due to Run II data in cteq6l

7 / 15

How to clean up the events

- Standard cuts (Had/Em, Tracker, E_T) 🗸
- Select on events with only one electron candidate
- CMS analysis (A.Khukhunaishvili) new method: cutting only on isolation energy
- $\bullet\,$ The CMS analysis was on μ^+,μ^-
- Can we apply the same method at CDF?
- $E_T > 23$ GeV for central and $E_T > 30$ GeV for plug
- $R_{\rm iso} < 0.25$ for central and $E_{\rm iso} < 4~{\rm GeV}$ for plug

Selection cuts

Scatter plots: E_{iso} vs $\not\!\!E_T$ before cuts

SIMULATION

DATA

Selection cuts

Scatter plots: E_{iso} vs $\not\!\!E_T$ after cuts

SIMULATION

DATA

Results

E_T : before and after cuts

BEFORE E_{τ} of 1st electron (cen) Before Cuts 25000 SIMULATION ŝ + DATA 5 2000 15000 1000 5000 25 35 E_T (GeV) E_T of 1st electron (plug) Before Cuts SIMULATION \$8000 + DATA 2600 14000 12000 1000 8000 6000 400 2000 E₊ (GeV)

$\underset{E_{\tau} \text{ of } f^{st} \text{ electron (cen) After Cuts}}{\text{AFTER}}$ SIMULATION + DATA 22000 20000 18000 16000 14000 12000 10000 8000 6000 4000 F 2000 20 35 E_T (GeV) E_T of 1st electron (plug) After Cuts SIMULATION 9600

W charge asymmetry at CDF

Results

Results

η plots: BEFORE CUTS...

e⁺/e⁻ η (Before Cuts)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Results

η plots: ...and AFTER CUTS

e⁺/e⁻η (After Cuts)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Concluding remarks

What we've understood

- cteq6l PDF set shows no significant discrepancy but is an improvement
- we got the master script (MC+Ntupler) to work
- it is not possible to perform the analysis with muons
- it is not possible to only select on E_{iso} (parallel $\not\!\!E_T$ cut is necessary)
- scatter plots let us know how hard we need to cut

What is left to do

- submit the whole CDF Run II dataset with the master script
- babysit the job on the grid
- strip classes and plot macros are ready to use ✓