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 Magnetic moment of any elementary particle is related to its
Intrinsic spin by the “g-factor”
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e Spin ¥ point particles are predicted by the Dirac equation to have
g=2
e But quantum loop corrections produce an anomaly.

g is slightly different from 2
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 In this experiment, a polarized beam of positive muons will orbit
Inside a magnetic ring with a ,magic“ momentum of 3.09 GeV

do — eB
P _ o< B = We =
dt Yme
(7 - B = 0)
 Magnetic and electric fields cause the precession of the spin of
the muon
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e We measure the frequenc _ eB
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 Parity violations in the weak muon decay py->v+e cause the

positron to be emitted preferentially in the direction opposite to
the muon's spin
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» Positrons will not remain on the stable orbit. They will fall
on to a smaller radius and hit one of 24 calorimeters.

» Energy deposited in each =
calorimeter due to positrons is

therefore correlated to muon spin
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e Precision measurement plagued by systematic error
¢ W, affected by

— Calorimeter gain

- Pileup

- CBO

— Lost Muons < - The bulk of my studies
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 |If Muons are lost from the beam, the average polarization could
change.

* Muons could exit ,magic* orbit and hit calorimeters producing
false signals

« My focus was to study these events

* Previous experiment studied these events from the data. We
wish to understand them via MC Simulation
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* Questions to answer:

— What are the characteristics of events with lost muons?
- How can we find these events in our data?
- How do the muons exit the magic orbit?
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» The first working hypothesis is that a muon exiting the ,magic*
orbit can hit more than one calorimeter. In fact, it is a MIP.

* On the other hand a positron will likely deposit all its energy.
* The rectangular calorimeters are divided into crystals.

e |f a muon hits more than one calorimeter we expect
correlations between which crystals where hit.

 Such correlations could allow us to infer when a hit is due to a
muon
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The crystals is
our calorimeter
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At first we are not interested on how exactly muons are lost
from the beam.

 Most probable cause Is muons whose momentum or initial
position deviates enough from ,magic* orbit so that it will hit
passive ring material and lose energy.

* To make the losses ,,democratic* we fill our simulated ring with
Xenon. Muons will lose energy via this interaction.
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* This way we can
find a generic
distribution of muon
hits on the
crystals(Xtals) in a
calo

e Most hits are
ringside, as
expected
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e Most lost muons will
hit three
Calorimeters.

 We analyze the
distribution of the
first of the three
calorimeter hits.

e The first hit in the
sequence is
y2usually” ring-side
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Xtal hits on second (of three) calorimeters
 The hits on the
second calorimeter
are in the center(as
we move to the right
we move to a lower
orbit)

 This is expected: a
muon loses energy
by interacting with
the first calo
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 The third hits are
more on the
Innerside.

e This graph would
probably need more
simulation time to
generate more
statistics...
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 We also analyze the
difference between
the xtal hit in two
consecutive calos.

* As shown, after
hitting a calo, muons
move to a lower
radius but stay, on
average, at the
same height
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* The important thing to study is the conditional probabillities that

If a crystal is hit, it is part of a sequence of calorimeter hits by a
muon.

* These probabilities would depend on the dynamics of the muon
and the interaction with the calos.

* In a complex real event, these probabilities can allow us to
determine if there are hits due to lost muons
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e This graph shows
the probabillity that,
given an xtal hit, it is
the first of a
sequence of three
hit calos
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The second hit of a
series again,
happens most likely
In the center of the
calo...

24.09.14

Vertical Dir

Probability that a hit on Xtal is the second of a series(of 3)

0.516128 0.521738

i 2 3 4 5 ) 7 8 9
Radial Dir



* And the third is likely
to come on the
Innermost side.

24.09.14

Vertical dir

Third conditional hit

0.157885 0.310345 0.333333

015

0

7 8 9
Radial Dir

1 2 3 4




* Being a MIP, muons
will likely lose less
energy in a xtal than
the electron. We
found the
distribution of
energy loss of a
muon in a crystal.

 The energy loss is
centered around
30 MeV
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» | Performed preliminary studies toward lost muon systematic
uncertainty evaluation.

| Determined lost muons topology using simulated events

My work represent a first attempt in building the logic to
discriminate lost muons vs real electron signal
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