Magn et 0000	ic Model	Mechanical Model 0000	Magnetic Optimization ○	First step 00	Second phase 0000
_					
	C			E' LL D'	1
	Cond	ceptual design	n of a 207 High	Field Dipc	ple
			Magnet		
			magnet		

Author: Lorenzo Andrea Parrotta Supervisor: Dr. Emanuela Barzi

< 17 ▶

-∢ ≣ →

Fermilab

1/21

-

Superconducting R&D Magnet System Department Technical Division

Lorenzo Andrea Parrotta

Magnetic Model 0000	Mechanical Model 0000	Magnetic Optimization ⊙	First step 00	Second phase 0000
Introduction				

- Quest for higher fields in accelerator magnets
- New classes of superconducting magnets (HTS)

Figure 4.1: Schematic view of a superconducting dipole coil.

Lorenzo Andrea Parrotta

Magnetic Model	Mechanical Model	Magnetic Optimization	First step	Second phase
0000	0000	⊙	00	0000

Aim of the study

- Investigate the feasibility of a 1T HTS dipole coil within an existing 11T dipole
- Design a concept of mechanical structure and a stress management solution for a HTS 5T insert dipole within a 15T Nb₃Sn dipole

Lorenzo Andrea Parrotta

Magnetic Model	Mechanical Model	Magnetic Optimization	First step	Second phase
0000	0000	0	00	

a: internal radius w: thickness

Magnetic Model 0000	Mechanical Model 0000	Magnetic Optimization ⊙	First step 00	Second phase	
a: internal radius					

- w: thickness
- ϕ : sector angle

Magnetic Model	Mechanical Model	Magnetic Optimization	First step	Second phase
0000	0000	0	00	

1 Magnetic Model

- 2 Mechanical Model
- 3 Magnetic Optimization

4 First step

5 Second phase

Lorenzo Andrea Parrotta

Magnetic Model	Mechanical Model	Magnetic Optimization	First step	Second phase
•000				

Magnetic Model

Hypotheses:

- current shell distributions
- higher multipole terms neglected
- Yoke effects neglected
- 2D model

Lorenzo Andrea Parrotta

Magnetic Model	Mechanical Model	Magnetic Optimization	First step	Second phase
0●00	0000	0	00	0000

Analitical model of Magnetic Field

B can be expressed as the curl of the vector potential **A**:

$${\bf B}=\nabla\times{\bf A}$$

For 2D problem: $\mathbf{A} = A_z \hat{k}$.

Lorenzo Andrea Parrotta

Magnetic Model	Mechanical Model	Magnetic Optimization	First step	Second phase
00●0	0000	0	00	

Magnetic Field contributions

1-Inside the aperture

$$A_z(r,\theta) = \frac{2\mu_0 J_0}{\pi} wr \, \cos(\theta) \sin(\phi_l)$$

2-On the coil

$$A_z(r,\theta) = \frac{2\mu_0 J_0}{\pi} r \left[(a+w-r) + \frac{r^3 - a^3}{3r^2} \right] \cos(\theta) \sin(\phi_l)$$

3-On the external region

$$A_z(r,\theta) = \frac{2\mu_0 J_0}{\pi} r \big[\frac{r^3 - a^3}{3r^2} \big] \cos(\theta) \sin(\phi_l)$$

Lorenzo Andrea Parrotta

Conceptual design of a 20T High Field Dipole Magnet

<ロ> <問> < 回> < 回> < 回>

Magnetic Model	Mechanical Model	Magnetic Optimization	First step	Second phase
0000				

Magnetic Field generated by the coil

Lorenzo Andrea Parrotta

Magnetic Model	Mechanical Model	Magnetic Optimization	First step	Second phase
0000	●000	0	00	0000

Mechanical Model

Hypotheses:

- Linear, Elastic, Omogeneous and Isotropic (IOLE) material
- 2D model
- thick membrane sector
- no thermal effects

11/21

< A

Lorenzo Andrea Parrotta

Magnetic Model	Mechanical Model	Magnetic Optimization	First step	Second phase
0000	0●00	⊙	00	0000

Magnetic Model	Mechanical Model	Magnetic Optimization	First step	Second phase
0000	00●0	0	00	0000

Two equations from equilibrium along r and θ directions:

$$\begin{cases} \frac{\partial \sigma_{rr}}{\partial r} + \frac{\sigma_{rr} - \sigma_{\theta\theta}}{r} + \frac{1}{r} \frac{\partial \sigma_{r\theta}}{\partial \theta} + f_r = 0\\ \frac{1}{r} \frac{\partial \sigma_{\theta\theta}}{\partial \theta} + \frac{\partial \sigma_{r\theta}}{\partial r} + 2 \frac{\sigma_{r\theta}}{r} + f_{\theta} = 0 \end{cases}$$

Based on previous studies (Bologna), a generalized plain strain model is considered.

$$\sigma_{zz} = \nu(\sigma_{rr} + \sigma_{\theta\theta}) - \overline{\sigma_{zz}}$$

$$\overline{\sigma_{zz}} = \frac{1}{\pi[(a+w)^2 - a^2]\frac{(\phi_2 - \phi_1)}{2\pi}} \int_{\phi_1}^{\phi_2} \int_a^{a+w} \sigma'_{zz} r \ dr d\theta,$$
being $\overline{\sigma_{zz}}$ and σ'_{zz} the average axial stress and the axial stress for $\epsilon_{zz} = 0.$

Fermilab

13/21

Lorenzo Andrea Parrotta

Magnetic Model	Mechanical Model	Magnetic Optimization	First step	Second phase
	0000			

Load boundary conditions and constraints

Volume forces (Lorentz's forces)

$$f_r = -B_\theta J_0 = J_0 \frac{\partial (\sum A_{z,i})}{\partial r} \qquad f_\theta = B_r J_0 = J_0 \frac{1}{r} \frac{\partial (\sum A_{z,i})}{\partial \theta}$$

Fermilab

14/21

(ロ) (部) (E) (E)

Lorenzo Andrea Parrotta

Magnetic Model	Mechanical Model	Magnetic Optimization	First step	Second phase
0000	0000	●	00	0000

Field Quality requirements

From multipole series: Skew multipoles $a_n \implies$ cancelled by symmetry Normal multipoles $b_n \implies$ can be made to vanish by coil geometry (sector angles and wedges)

Lorenzo Andrea Parrotta

Magnetic Model	Mechanical Model	Magnetic Optimization	First step	Second phase
			0	

First step: 1T HTS standalone insert within $11TNb_3Sn$ coil HTS loadline

HTS: BSCCO-2212 $J_{0,Nb_3Sn} = 800 \frac{A}{mm^2}$ $a_{HTS} = 15mm$ $w_{HTS} = dcd$ $\phi_I = 60^{\circ}$

Lorenzo Andrea Parrotta

Magnetic Model	Mechanical Model	Magnetic Optimization	First step	Second phase
			00	

First step: 1T HTS standalone insert within $11TNb_3Sn$ coil

 $J_{0,HTS} = 300 \frac{A}{mm^2}$ Stress field for $\theta = 0$ (critical section):

Results

With stresses below the BSCCO-2212 stress limit of about 50 MPa the HTS insert results feasible

Lorenzo Andrea Parrotta

Conceptual design of a 20T High Field Dipole Magnet

Fermilab 17 / 21

Magnetic Model	Mechanical Model	Magnetic Optimization	First step	Second phase
0000	0000	⊙	00	●000

HTS 5 T insert within a 15 T dipole

- Field quality optimization (multipoles made to vanish until b₉);
- Material saving;
- 11 angles and 10 constraints ⇒ 1 parameter

Magnetic Model	Mechanical Model	Magnetic Optimization	First step	Second phase
0000	0000	0	00	0●00

Stress Field

Need for Stress Managemet structures

Azimuthal stress management provided by structural wedges. Radial stress management provided by Stainless Steel shells.

Fermilab 19 / 21

Lorenzo Andrea Parrotta

Magnetic Model	Mechanical Model	Magnetic Optimization	First step	Second phase
0000	0000	0	00	00●0

Proposed structure - Slotted shells

Magnetic Model 0000	Mechanical Model 0000	Magnetic Optimization ○	First step 00	Second phase 000●
Conclusion	S			

- Field quality optimization on the proposed structure (performed)
- FEM simulation of the entire structure
- Need for BSCCO 2212 material characterization

Lorenzo Andrea Parrotta